
Basic Programming M
Dean area, we might want the program to search
for every occurrence of ` Cinderford' in the TOWN

field. The program could search through the

TOWN fields and note the location of each

occurrence of Cinderford. All that would then be

necessary, to print the names and addresses of all

these friends, would be to retrieve all the elements
having the same number from all the arrays for
each `Cinderford' record. Using this approach,
there would be no need to inspect the INDEX field,

and the technique has the merit of being a

relatively simple operation.

In the next instalment we will look at some of

the problems involved in searching through lists to

find specific items.

Exercise
• Assume that records with the following fields

will be adequate for our computerised address
book:

NAME ield
STREET field
TOWN field
COUNTY field
PHONE NUMBER field

Basic Flavours
Step 3

10 INPUT "INPUT FJLL NAME;F$
15 LET COUNT=O
20 FOR L=1 TO LEN F$
30 LET CS-FS(L)
401E CS=" "THEN LET COUNT=L
50 N EXT L
60 PRINT"LAST SPACE IS IN

POSITION';000NT
70 STOP

9990 DEFFN MS(XS,P,N)-XS(P TO
P+N -1)

9991 DEF FN LS=XS(TON)
9992 DEFFN RS=X$(LEN X$-N +1 TO

In this programming project, the string
functions MID$, LEFTS, RIGHTS will be much
used. Their equivalents in Sinclair BASIC are:
LEFTS(FS,N) 'eplace by FS(TO N)

RIGHTS(FS,N) 'eplace by
FS(LEN(FS)-N+1 TO

MIDS(FS,P,NI replace by
F$(P TO P+N -1)

MID$(FS,P,1) replace by F$(P)

Note that string variable names on the
Spectrum cannot be more than one letter long
(plus the "S").

Step 4

5 LET SS-""
10 LET FS='T01A BROWN"
20 LET COUNT=4

30 FOR L-COUNT +1 TO LEN FS
40 LET S$=S$+F$(L)
50 NEXT L

60 PRINT 'SURNAME IS ";SS
70 STOP

Step 5

5 LET CS-""
10FORL=1T000UNT -1
20 LET TS-FS(L)

Suppose that one of the options offered bya menu

in the computerised address book is:

5. CREATE A NEW ENTRY

You type 5 and the program branches to the part
where new records are created (you may assume
that there are no entries in the address book yet).
Since the program is to be fully menu-driven, you

will always be prompted for the entries expected

— with prompts such as ENTER THE NAME, ENTER
THE STREET and so on. Here is a list of the expected

results:

1. An element in an arrayfor the nzme

2. An element in an arrayfor the st•eet

3. An element in an arrayfor the town

4.An element in an array for the county
5. An element in an array for tie phone number

Your task is to develop this, through a process of

top-down programming using a pseudo-
language, to a point where direct conversion into

BASIC becomes possible. The pseudo-language can

follow your own rules; we only suggest that you

use capital letters for keywords such as IF, LOOP

and so on, and small letters for descriptions in

ordinary English of the operations to take place.

30 LET CHAR=CODE TS
40 IF CHAR>64 THEN LET CS=CS+CHRS

CHAR
50 NEXT L
60 STOP

In thisfragrrent, the problem of sincle letter
string variable names has arisen: F$ is the
Spectrum equivalent of the variable
FULLNAMES, so CS has to stand in for the
variable FORENAMES.

Part of subroutine X

FOR L-1 TO LEN W$

LET C$-w$(L:
IF CS-'." THEN GOTO 1550
NEXT L

Part of subroutine Y

FOR 0=1 TO LIMIT
LET A(L)=P(Q)
NEXT Q

Of the most popular hone computers, only
the BBC Micro supports long variable names
such as FULLNAMES. The Spectrum allows
long numeric variable names, but only sirgle
letter string variatle names. The Dragon 32,

Vic-2J, and Commodore 64 support long
variable nanes, but only the first two
characters are significant, so :hat
FULLNAMES is valid, but refe's to the same
memory location as FUJIYAMAS: both have
the same first two characters.

On the Oric -1 variable names cannot he
more than two characters (first a letter then a
number or a letter), while the Lynx allows only
single letter variable names, trough both
lower- and upper-case letters are valid and
distinct.

THE HOME COMPUTER COURSE 257

