
Shortest Route
A Midlands firm has interests in
six tcwns, and has to send a
lorryaround them every month.
The firm's ; omputer can work
out the most efficient route.

TownS(1) "Barmouth"

TownS42) "Carlisle"

TownS(3) "Margate"

TownS(4) "Nottingham"
TownS(5) "Pe rth"

TownS(6) "Truro "

The names of the towns are in a

sequential file on tape in
alphabetic order. They are read
from the file in this order into
the array Towns.). Tha
computer works out that the
best order is:

Nottingham Town$(4)

Perth Town$(5)
Carlisle TownS(2)

Barmouth TownS(1)

Truro _ Town$(6)

Margate TownS(3)

Rather than store the town
narres again in this order. using
up more memo ry , thecomputer
stores only the position

numbers of the towns in the
array TownS(). Like this:

VNott

ingham

The list of numters is an incex

to the array Towns(). Other
such indexes to the array cculd
be created. each giving a
d ifferent order to the names.
The advantage of indexing Ike
this is that the cnginal file does

not have :o be sorted or
dup licated only the indexes

need be sorted and stored

o ^ e

Classmifmied Informat'ion
When designing any program that involves the storage or
manipulation of information, it is important to pay close attention to
structure, so that items of data needn't be duplicated

Anyone who has ever used a card index system (a
library catalogue, for example) knows how useful
it can be. If you have ever dropped the card box
you know that the same cards out of order become
maddeningly useless. A libra ry contains a vast
amount of information, but unless it's a rranged in
some sort of order its value as an information
system is almost nil.

The essence of an information system is not the
information itself but, rather, its organisation.
Take, for example, this (fictional) item in a trade
directory :

Smith, J., 15 High Street, Middletown.
On its own, its value as information is limited; if,
however, You know that it comes from the
Ironmongers' section of the directory, then it has a
new significance that comes from the structure in
which it is placed.

The simplest data structure is in the form of a
fi le: a collection of data with common features.
The name of the file reveals something about the
information in it, and putting all that information
together under that name makes it much easier to
use. The file can be treated as one large unit of
information, or as a pa rticular grouping of smaller
units. A book is a file; Mrs Beeton's
autobiography is usually read as a whole, while her
cookery hook is usually read as a collection of
individual recipes.

If the file is large, finding a pa rticular piece of
information may mean starting with the first item
of the file, and scanning each item in turn until the
right one is found. This is called sequential search
or serial access, and a file arranged this way is a
sequential file. A television programme is a
sequential file of information, and so is a human
conversation.

Sequential files are common because they are
useful and cheap to implement, and because in
many ways they mirror human methods of
thought. However, they can become unwieldy
and slow to use, so they are frequently divided

internally into sub-files, which can be found
directly without searching through the whole file.
Books were once simple sequential files, but the
invention of chapters, page numbers, and
indexing transformed them. The chapters are sub-
files of the hook, and the pages are sub-files of
both the chapters and the book.

A tile that does not require sequential searching
is called a direct access file. An album of songs on
magnetic tape is a sequential file, while the same
album on a long playing record is a direct access

file: finding a song on the tape requires starting at
the beginning and winding forward, while any
track on the LP can be accessed directly by moving
the pick-up arm across the LP to the start of the

track.
Direct access depends on knowing where things

are: in a book the index tells you what is where.
Knowing exactly where things are means work
(and, therefore, costs money). Indexing a book is
an extra task for the author or publisher, and the
information in the book m'ay not warrant this
expense; novels, for example, are not indexed,
whereas textbooks usually are.

Computers process large quantities of
information at speed, using a varie ty of data
structures. Data has to be stored permanently on
magnetic tape or disk in some structured way -
typically in a sequential file — but in quite different
ways in the computer's main memory.

Suppose that a bakery has the addresses of all its
shops in a sequential file on tape, and wants the
computer to print delivery schedules for the
drivers who take bread to the shops. The file on
tape might look like this:

Atkinsons 22 High Street
Brown & Co 108 Alma Road
Edwards 49 Barkiig Lane
Wilson Bros 7 Hich Street
Wrigits 65 Lower Road
Youngers 31 Parsons Hill

When the file is read from tape into main memory,
each name and address will be stored in a
numbered location of its own, and all these
locations together form a block of memory with its
own name, so the file in memo ry looks like this:

BLOCKNANIE: Slops
1) AtkinsonS 22 High S:reet
2) Brown & Co 108 Alma Road
3) Edwards 49 Barking Lane
4) Wi son Bros 7 High Street
5) Wrights 65 Lower Road
6; Youngers 31 Parsons Hill

Now the data items can he accessed individually
by naming the block and the location within it.
Shops(4), for example, contains Wilson Bros, 7 High
Street. This structure is called an a rray (see page
194), the data structure most commonly used by
computers for internal data processing. It is like a
hook with one piece of information on each page.
Notice that this simple structure immediately

204 HE HOME COMPUTER COURSE

