
M

' N

P

Basi ramming

to subroutines to be added later. If your BASIC

doesn't feature MERGE E either, then you will have to
type in the various modules as they are written,
and save them together.

The program blocks in the table have been
merged as a `trial run' in the listing printed here, to
illustrate the pitfalls of the `try it and see' approach
encouraged by languages such as BASIC. Our
program would not run properly because the flow
of control through it has not yet been thought
through carefully enough. There is no point in
typing in the whole of this program just to find out
that it will not work, but if you have saved all the
routines from earlier parts of the course, and if
your BASIC has the RENUM command, you can try
renumbering and then MERGEing to produce a
similar listing.

The first block in the main program is INITIL,
which is supposed to initialise variables,
dimension arrays, read in files, assign the data to
the arrays, set flags and so on.

The *INITIL* subroutine is broken down into
*CREARR* (to create the arrays),'RDINFL' (toread
in files and assign the data to the appropriate
arrays) and *SETFLG* (to set flags etc.).

When all this has been done, the program
moves on to `GREETS*, a subroutine to print a
greeting message on the screen. The last part of
this routine waits for the user to press the space bar
for the program to continue.

The program then goes on to *CHOOSE*. This
comprises two parts: the first presents a menu of
the options offered by the address book program:
the second accepts the choice input from the
keyboard and assigns the (numeric) value to a
variable called CHOI.

The value of this variable is used by the next
program block, EXECUT, to select one of nine
further program blocks. All of these, except
EXPROG, will need to return to *CHOOSE * after they
have been executed so that the user has the
opportunity of selecting another option. This will
not be required if 9 (EXPROG) has been selected
because this option is supposed to terminate the
operation of the program.

The chief problem with this program as it stands
is that the control flow is not correct. I N ITI L insists
that we read in a file from mass storage whether a
file exists or not. If the program is being run for the
first time, no records will have been entered and
there will be no data files on the tape or disk. Any
attempt to open and read a non-existent file will
result in an error message and the program will not
work.

What is required is to have the * RD IN FL* routine
called only by one of the EXECUT modules, and
then only once each time the program is run. This
suggests that there should be an INFL flag,
originally set to 0, that will be set to 1 once the file
has been read in. If it has been set to 1, it will inhibit
further attempts to read in. ADDREC will then
always search through the arrays to locate the first
empty element and will write the information
there. This record will almost certainly not be in

the proper sort sequence, so there should be a
RMOD flag which will be set to 1 when executing
The RMOD flag should also be set to' if MODREC or
DELREG are executed. You can try writing the
relevant code to achieve this, or if you simply want
to run the program change line 1310 to RETURN.

Adding a record, deleting one or modifying one
all mean that the sequence of records is likely to be
out of order, so any module (FN DREG, for example)
should first check R MOD to see if any changes have
been made. If they have, we could either insist on a
sort before a search is made, or put up with an
inefficient search through a pile. EXPROG will
automatically check R MOD D and call the sort routine
if it is set (to 1) before saving the data in the file on
tape or disk.

The `human interface' aspects of the program,
which we mentioned earlier, can be broken down
into the following categories:

User interface
User image
Error recovery
Security
Adaptability

User interface refers to the way the user of the
program communicates with the program. We
have opted for the use of menus throughout
(rather than commands). Many people prefer
commands, but the important point is that,
whatever form of intercommunication is used, it
should be consistent. Similar commands should
not do different things in different parts of the
program. If they do, the user has to read each
menu carefully before each choice is made and
`reflexes' cannot be built up.

As our program stands, it is poor in this respect:
the greeting message is terminated by hitting the
space bar; the options menu is terminated
automatically by hitting any of the number keys
from 1 to 9; and the data entry in ADDREC is
terminated (for each field) by hitting the RETURN
key. This kind of inconsistency may be acceptable
in a `home-brew' program, but should be
considered unacceptable in commercial software.

User image refers to the way the user perceives
the operation of the program. It is considerably
influenced by the quality of the user interface.
Most of the operations going on inside the
computer are completely hidden from the
computer operator. The only way the operator
can form an idea of what's going on in the program
is from the visual input he receives from the screen
in response to the inputs from the keyboard. The
user image we would want from our address book
program would be that of an actual, physical
address book. Similarly, the user image desirable
from a word processing program would be that of a
piece of `paper' (on the screen) upon which we
type. In this case, ideally, bold type would appear
bold on the screen, underlined type would be
underlined, and justified type (type with a straight
right margin) would be justified on the screen.

A perfect user image is seldom possible — no

THE HOME COMPUTER COURSE 355


