
called branch instructionsbecause they represent a
branch-point in the flow of program control. Their
operand is a single-byte number, which is added to
the address in the program counter to produce a
new address. Consider what happens when the
following program is executed:

ofc SM
5502 780

5E00 AN #S34 ADC A,S34
5E02 BED S03 JR Z,$03
5E04 STA S5E20 LD (S5E20),A
5E07 RTS RET

If the ADC instruction at $5E00 produces a zero
result in the accumulator (which is unlikely but, as
we'll see later, possible), then the BEQ and JR Z
instructions at $5E02 will cause $03 to be added to
the contents of the program counter. The next
instruction to be executed, therefore, will be the
return instruction at $5E07, causing the instruction
at S5E04 to be skipped over.

At first sight, this may seem wrong. After all, if
the instruction at S5E02 causes $03 to be added to
the program counter, surely the address stored
there will become $5E05? But it is important to
remember that the program counter always points
to the next instruction to be executed and not the
instruction currently being obeyed. Thus, when
the instruction at $5E02 begins execution, the
program counter will contain the address $5E04 -
the location of the next instruction. If $03 is added
to S5E04 the result will be S5E07, the address of the
following instruction.

It's worth remarking here that the processor is
not capable of checking whether the addresses
pointed to are correct. If we inadvertently change
the displacement in the instruction to $02, then the
program counter will be increased (if the
accumulator contains zero) by $02, and the
processor will consider S5E06 to be the address of
the op-code of the next instruction. In our correct
program, $5E06 contains the value S5E, which is
the hi-byte of the operand of the instruction at
$5E04. The processor, however, cannot evaluate
whether it is the right instruction or not. As far as it
is concerned, S5E is a valid op-code and it will
proceed to execute it, taking the bytes following
$5E06 as the operands of the instruction. The
program will probably crash as a result.
Miscalculating displacements like this is one of the
commonest errors in machine code programming.

In Assembly language programming, however,
calculating jump displacements need not be a
problem because the assembler program can do it
for us. Therefore, instead of supplying a hex
displacement as the operand of the branch

MACHINE CODE/PART 11

COUNTER INSTRUCTIONS

Loops and conditional branches are
implemented in Assembly language by
using the processor status register flags to
test the condition of the accumulator, and
the relative jump instructions to change the
flow of control in the program. These
structures and the indexed addressing
mode combine in creating data tables.

Before we can begin to use the various CPU
addressing modes (especially indexed addresses)
to advantage, we must first be able to write a loop.
Without this fundamental structure we are in
much the same position as a BASIC programmer
who knows about arrays, but is ignorant of the
FOR... NEXT command. There are no automatic
structures like FOR... N EXT in Assembly language
(though there is a Z80 instruction that is very close
to it), but we can construct loops of the IF...THEN

GOTO... type. These require instructions that make
decisions or express conditions, and effectively
change the order in which instructions are obeyed
in the program.

Decision making in Assembly language centres
on the flags in the processor status register. These
flags show the effects on the accumulator of the
last instruction executed, and are sometimes
called condition flags. All these flags can be used
in decision making, but we will need to consider
only two of them at present — the zero (Z) and the
carry (C) flags.

The state of these flags can be used to decide
whether the processor executes the next
instruction in the program, or whether it jumps to
another instruction elsewhere in the program. The
decision to continue or to jump is arrived at by the
processor's either changing or accepting the
address contained in its program counter. This
register always contains the address of the next
machine code instruction to be obeyed. When the
processor begins to execute an instruction, it loads
the op-code of the instruction from the byte
pointed to by the address in the program counter.
The address in the register is incremented b

y the
number of bytes in the instruction so that the
program counter then points to the op-code of the
next instruction. If the current instruction causes
the program counter to point to an address
elsewhere in the program, then a jump is
effectively generated.

On the 6502, the instruction BEQ causes the
program counter to be changed if the zero flag is
set. BCS is the equivalent instruction if the carry
flag is set. On the Z80, these instructions are JR Z
and JR C respectively. These four op-codes are

216 THE HOME COMPUTER ADVANCED COURSE

