
Example
LOCATION MACHINE CODE ASSEMBLY LANGUAGE

8F00 FO 16 BEQ $16

BEFORE AFTER
Program[02 In 18
Counter 8F hi 8F

$8F00

Program
Memory

The contents of the program
counter are offset by the
value of the byte following
the op-code.
EFFECT ON PSR

SZ Fi VNC

MSB Fri LSB

NO EFFECT

Example
LOCATION MACHINE CODE

8F00 28 16

BEFORE
Program 02 lo
Counter 8F hi

ASSEMBLY LANGUAGE

JR Z,$16

AFTER
18
8F

S8F00

Program
Memory

The contents of register X are
increased by one. Example

LOCATION MACHINE CODE

F391 E8
ASSEMBLY LANGUAGE

INX

BEFORE
PSR

X

EFFECT ON PSR
SV BDIZC

MSB Ix 11 I I xl LSB

AFTER
1077722191

$F391

Program
Memory

Z80INC IX - INCREMENT IX
Implicit 0023 (2 bytes)

The contents of IX are
increased by one. Example:

LOCATION MACHINE CODE ASSEMBLY LANGUAGE

F391 0023 INC IX

EFFECT ON PSR BEFORE AFTER
SZ H VNC Program FE In 00

MSB II LSB Counter E7 hi E8

NO EFFECT
$F391

Program E
Memory 2

BASIC string variable: When we write in BASIC:

200 LET AS="MESSAGE 1"

then we are actually creating a pointer to the start
of a table of bytes containing the ASCII codes for

'E', 'S', and so on. Whenever the BASIC

interpreter encounters a reference to AS, it looks in
its own symbol table to find the location at which it
points — that is, the starting location of the
contents of AS. Similarly, in our Assembly
language program we can treat LABL1 as the
equivalent of AS, given that we have already
written a program fragment that allows us to
manipulate a table using indexed addressing.

The pseudo-ops, then, allow us to remove
absolute addresses and values from our programs,
and replace them with symbols. This has the effect
of diminishing the problems of portability and
relocatability. What we need now is to be able to
access these portable, relocatable modules from
the main program. In other words, we need a
machine code equivalent of BASIC'S GOSUB
command.

There is such an instruction, of course: JSR and
CALL in 6502 and Z80 respectively. Both require
an absolute address (which can be a label) as
operand, and both have the effect of replacing the

contents of the program counter with the address
that forms their operand. The next instruction to
be executed, therefore, will be the first instruction
of the subroutine so addressed. Execution
continues from that instruction until the RETURN
instruction — RTS and R ET respectively — is
encountered. This command has the effect of
replacing the current contents of the program
counter with its contents immediately prior to the
JSR or CALL instruction was executed. The next
instruction to be executed, therefore, is the
instruction immediately following the JSR or CALL.
This is exactly the mechanism used by the BASIC
interpreter in executing and returning from
G OS U Bs. It's easily understood as such, but it raises
the question of how the old contents of the
program counter are restored when the RETURN
instruction is executed. The simple answer is that
the JSR and CALL instructions first 'push' the
program counter contents onto the stack (see
illustration on page 136) before replacing them
with the subroutine address; and the RTS and RET
instruction 'pop' or 'pull' that address from the
stack back into the program counter. The
questions of what the stack is, how you push or
pop it, and why you'd want to do so, are the
subject of the next instalment of the course.

Instruction Set

The contents of the program
counter are offset by the
value of the byte following
the op-code.
EFFECT ON PSR

SV BDIZC

MSB III I I LSB

NO EFFECT

650-1

238 THE HOME COMPUTER ADVANCED COURSE

