
MBasic Programming

Changing Places
After looking at how to insert new records, we move on to ways of
retrieving them. As anticipated, we first encounter the problem of
finding an exact match

I.

We ended the last instalment with an exercise for
you to write a database-type program that
allowed data to be entered into it. Let's look at
some of the steps involved in entering a new
record as a way of continuing our examination of
what is involved in the INITIALISE stage of our main
program. First, let's assume that there are the
following fields and corresponding arrays:

FIELD ARRAY
1 NAME field NAMFLD$
2 MODIFIED NAME field MODFLDS
3 STREET fielc STRFLD$
4 TOWN field TWNFLDS
5 COUNTY field CNTFLDS
6 PHONE NUMBER field TELFLDS
7 INDEX field NDXFLD$

The meaning of most of these fields should be
reasonably clear, with the possible exception of
fields 2 and 7. Let's first consider the MODIFIED
NAME field. When we initiall y looked at the
problem of the data format for the name, we
debated whether to have the name format tightly
specified (rigid) or loosely specified (fuzzy) and
we opted for the latter. Since the way a name can
be entered is extremely variable, a rigid format
would have made search and sort routines very
difficult. To solve this we decided that all names
would be converted to a standardised format: all
letters converted to upper case, all non-alphabetic
characters (such as spaces, full stops, apostrophes,
etc.) removed and that there would be only a
single space between the forename (if any) and
the surname.

The need to standardise names like this arises
because the sort and search routines have to have
some way of comparing like with like. On the
other hand, when we retrieve a name and address
from the database, we want to have the data
presented in the form it was originally entered.
There are two ways of handling this problem:
either each name filed is converted into standard
form only when sorts and searches are taking
place, or the name field can be converted into
standard form and stored as a separate field so
that sort and search routines can have instant
access to standardised names.

There are advantages and disadvantages in
both approaches. Converting the name fields
temporarily when they are wanted by other
routines saves memory space, since less data
needs to be stored in the file. On the other hand,
this procedure is extremely time-consuming.

336 THE HOME COMPUTER COURSE

However, if a separate field is reserved for the
standardised form of the name, the conversion
will need to be performed only once for each
record. And although extra memory is consumed,
searches and sorts will be executed quicker.

The other field that may cause confusion is the
INDEX field. This is really included as a spare field
to allow for future expansion or modification of
the database without the need for major rewriting
of the program. Its inclusion introduces the topic
of `binding' — a term that means the fixing of data
and processing relationships. All the fields or
elements in each of the records are bound because
they have the same index (the same element
number or subscript in their respective arrays),
and because all the fields in a record will be stored
in a file together. This can make the addition of
new data types or relationships at a later stage a
difficult task. possibly involving the complete
reorganisation of the file structure and a major re-
writing of the program. The incorporation of the
INDEX field at this stage will make future changes
to the program much simpler.

Before attempting to add a new record to the
database, we will make a few assumptions about
the structure of the files. First, we will limit the
number of records to 50 (even though this is really
too small for a useful address book — we'll find
out how to handle large amounts of data later).
We will also assume that all the data has already
been transferred — as part of the INITIALISE
procedure — into arrays.

When a new record is added, it is simplest to
add it to the end of the file (that is, to the first
empty element in each array). There is a good
chance that the new record will be out of order
with the others, but that is a problem we can
investigate later. The first thing to do, therefore,
will be to find out how big the array is. Since this is
a piece of information likely to be useful in many
parts of the program, the best place to do it is in
INITIALISE. This is a clear case of the need for a
global variable (that is, a variable that can be used
in any part of the program). We will call it SIZE.
Another global variable likely to be useful is the
index of the current record. Since no record will
be current when the program is first run, assigning
an initial value to CURR will have to wait until the
program does something to the data. CURR can,
however, be initialised to zero in the
INITIALISATION procedure. Initialising a variable to
zero is not strictly necessary in BASIC as this is done
automatically. It is, however, good practice and


