binary ones (on) or zeros (off), and the entire
contents of the screen can be regarded as a
‘mapping’ into dots of the bits that comprise those
bytes of screen RAM. Unfortunately, although
the BBC Micro, the Spectrum and the
Commodore 64 all use this mapping technique,
none of them does so in a straightforward manner.
For our purposes, the simplest method would be
to divide each row of the screen into pixel bytes
numbered consecutively from left to right, the
leftmost byte in a row following the rightmost in
the preceding row. For a variety of reasons this is
not the case on any of these machines. Let’s
consider each case separately.

The S screen is always in high
resolution mode, and a fixed area of memory is set
aside for mapping the screen. The mapping is
complex, however, as the screen is divided
horizontally into three blocks of eight PRINT rows,
and each print row is divided horizontally into
eight pixel rows. The addressing of the bytes that
comprise these rows is sequential within the rows,
but not between the rows. The BBC Micro and the
Commodore 64 do not follow this pattern, but are
equally devious. For the moment, it is
considerably easier to understand if we confine
ourselves to outputting ASCII characters to the
screen.

This is something that the machine does all the
time, and there are, therefore, machine code
routines in ROM for the purpose. Given a suitably
detailed description of their operation, we can call
these routines from our own Assembly language
programs. What we need to know is the call
address, the communication registers, and any
necessary preliminaries.

On the Spectrum there are no preliminaries to
observe, and the communicating register is the
accumulator, which must contain the ASCII code
of the character to be printed. We need only issue
the instruction RST $10 and the character whose
code is in the accumulator will be printed on the
screen at the current cursor position. This is very
much the pattern of the other two systems, but the
RST-(ReSTart) op-code is peculiar to the Z80
command set: it is a single-byte zero-page branch
instruction that must take one of only eight
possible operands—S$00,508,510,518, etc. to S38.
Each of these locations points to the start address
of aROM routine, somewhere in zero page. These
routines are typically dedicated to handling input
and output, and we call them through the RST
instruction rather than directly by address. This is
partly for speed (it is quicker to use RST than CALL,
although only the CPU would notice the
difference), and partly for the sake of the
program’s portability. If every Z80 programmer
knows that RST $10 calls the PRINT routine on
every Z80 machine, then nobody is going to
bother about where a particular systems software
engineer actually locates the PRINT routine, and
the engineer is free to locate it anywhere, provided
that zero page is arranged in such a way that the
RST locations direct programs to the start

addresses of the commonly-agreed routines.

On the BBC Micro the procedure is similar: an
ASCII code in the accumulator combined with a
JSR SFFEE command will cause the character to be
PRINTed on the screen at the current cursor
position. This is the OSWRCH routine, much
referred to in BBC literature and well
documented in the Advanced User Guide.

The Commodore 64 follows the pattern of the
other two machines. An ASCII code in the
accumulator and a JSR $FFD2 command causes the
character to be PRINTed at the current cursor
position. This is the CHKOUT routine, and is
documented in the Programmer’s Reference
Guide.

This, therefore, is the general pattern of use of
ROM routines and demonstrates the principle of
communication registers. A communication
between the calling program and a subroutine
may pass either way — an input routine, for
example, might pass a character from an external
device to the CPU via the accumulator. Even
when there is no substantive information passed
like this, an error code may well be returned from
the subroutine through one of the registers. This
sort of protocol is documented in the many
machine-specific works of reference now
available.

Input from the keyboard and other devices will
be dealt with in later instalments, as will high
resolution plotting from machine code. We
conclude this instalment of the course with a
summary of the various aspects of Assembly
language and machine code programming.

IN SUMMARY

We began the course with a wide-ranging look at
machine code from a very non-specific point of
view, trying to dispel some of its mystique and
place it in context as just one kind of code among
all the others that we (and computers) use. We
have seen how the same sequence of bytes in
RAM can be interpreted at one moment as a
string of ASCII data, at the next as a BASIC
program line, at the next as a string of two-byte
addresses, and then again as a sequence of
machine code instructions. A few minutes spent
playing with a machine code monitor program
should convince you that some sequences of bytes
can be disassembled as three quite different, but
valid, sequences of instructions — depending on
whether you start the disassembly at the first,
second or third byte in the sequence. Nothing
intrinsic to the code prevents this happening, and
the CPU itself cannot tell whether it’s executing
the code that you wrote, or some garbled version
of it, accidentally transposed in memory.

We went on to consider the organisation of
memory, and the common conventions of
addressing. To make any sense of this we had to
begin the study of binary arithmetic, which
immediately delineated the horizons on our view
from the CPU — in eight-bit processors we are
confined, except in particular circumstances, to

THE HOME COMPUTER ADVANCED COURSE 317

