
Basic Programming

New Entries
In order to insert a new entry in an array, it is first necessary to find a
blank space. The binary search is an efficient way of achieving this

p

We saw in the previous instalment how a file of
data is made up of records, which are divided into
fields, each of which can be given access to the
other fields through an indexing field. Now we will
consider some of the techniques of searching
through these lists.

Creating records for our address book is not
difficult. Assume that a separate string array exists
for each of the fields in the record. These can be
called FLNAMES (for full name), STREET$, TOWN$
and PHONES (we'll talk later about our use here of a
string variable rather than a numeric variable for
the phone number field). In the list of eight
desirable functions of the address book program,
number six was the facility to add new entries. If
these eight choices were presented on the screen at
the beginning when the program was run,
selecting 6 would take you to an input routine of
the type presented as an exercise.

Assume there are already a number of entries in
the address book, but you can't remember how
many. It is essential that new entries are not written
over existing entries, so one of the tasks of the
program might be to search through the elements
in one of the arrays to find the first one containing
no data,

Searching through an array to see whether an
element is `occupied' is not difficult. String
variables can be compared in r3Asrc just as numeric
variables can. I F AS="HOME" THEN... is just as valid
as IF A=61 THEN..., at least in most versions of
BASIC. If any of the arrays in our address book has
an entry already, this will consist of at least one
alphanumeric character. An `empty' element will
contain no alphanumeric characters, so all we
need to do is search through the elements, starting
at the beginning, until we find one containing no
characters.

If there are arrays for the name, the street, the
town and the phone number, we will have four
arrays with one element in each for each field in
the record. Since all these fields `go together', the
15th record will have its name data in the 15th
element of the name array, its street data in the
15th element of the street array, the town data in
the 15th element of the town array, and the phone
number data in the 15th element of the phone
number array. We therefore need only to search
through one of these arrays to find an empty
element; we don't need to check all the arrays.

If the variable POSITION represents the number
of the first free element in any one of the arrays, a
program to locate POSITION (assuming it is not

already known) could be as simple as this:

PROCEDURE (find free element)

BEGIN
LOOP

REPEAT UNTIL free element is located
READ Array (POSITION)
POSITION = POSITION + 1
IF Array(POSITION)=" "

THEN note POSITION
ELSE do nothing

ENDIF
END LOOP

END

In BASIC, this could be as simple as:

1000FORL=0TO1 STEPO
1010 LET POSITION POSITION + 1
1020 IF FLNAME$(POSITION) _" "THEN LET

L=X
1030 NEXT L
1040 REM rest of program

Note that the value of X in line 1020 is the value
required to terminate the FOR... NEXT loop and
this value varies from machine to machine (see
Basic Flavours). It is also important to note that
this is a program fragment, and it is assumed that
FLNAMES() is DIMensioned and that POSITION has
been initialised. To run this fragment as a program
on its own, you must DIMension FLNAMES() and
initialise POSITION and X, at some point before line
1000.

Although we have used the FOR X = 0 TO 1 STEP 0
technique before, this is a good place to examine in
more detail how it works. Usually, a FOR... NEXT
loop in BASIC `knows' beforehand how many times
the program fragment is expected to repeat. If you
want to repeat something 30 times, FOR X =1 TO 3C
will do admirably. This time, however, we are
simulating a REPEAT... UNTIL loop. Although
ordinary versions of BASIC do not have
REPEAT... UNTIL on offer, it is easy enough to
simulate using FOR .. NEXT. As long as the test in
line 1020 fails, L (the FOR... NEXT loop counter)
remains at the value 0, with 0 added to it at every
iteration (repetition of the loop); while line 1010
causes POSITION to be increased by 1 every
iteration. When the test in line 1020 is true (that is,
when an empty element of FLNAMES() is found), L
is set to the value X, and the FOR.. NEXT loop is
terminated at line 1030. This leaves POSITION
pointing to the first free element of FLNAMES().

POSITION is a value we are likely to need to

272 THE HOME COMPUTER COURSE


