
4jrCHINE CODE/OPERATING SYSTEMS

address, &00, in location &200, and the high byte,
&OC, in location &201. The routine prints to the
screen a given number of characters; the first
parameter of the * CODE command holds the
ASCII code of the character and the second
parameter is the number of times that the
character is to be printed to the screen.

*LINE isn't as generally useful as *CODE but if
you want to use it then the principles shown in the
following program can be applied, as long as you
remember that you will enter your program with
one in the A register and the X and V registers
pointing to the text string in memory. This is the
main function of *LINE: passing text strings over to
machine code programs. For situations where
there aren't many parameters to pass to your
routine, these two calls are the most elegant way of
doing it.

Line 20 of the program sets up the USERV to
point to our machine code routine. The loop
between line 90 and 120 prints the character
whose ASCII code is in the A register to the screen
V times. If the routine is entered by a *LINE
command, lines 60 and 70 detect this and quit the
routine. Lines 200 to 250 actually issue the * CODE
command with variable parameters.

first thing to say about OSRDCH is that it's really
only useful in assembler programs - BASIC is
obviously well endowed with input routines such
as GET and INPUT. We call this routine at address
&FFEO, and after return from the call, the character
read in from the input stream is in the A register; if
an error has been detected during the read
operation, then the carry flag is set to one,
otherwise it is reset to zero. Thus, if C=l on return
from the OSRDCH routine, the character code
contained in the A register is probably invalid in
some way. When we're reading from the keyboard,
this error is often caused by the Escape key being
pressed. This situation is indicated by C=l and the A
register holding the value 27 (the ASCII value for
Escape). If you detect this situation, then it is vital
to act upon it; the BBC OS expects such an Escape
error to be acknowledged by the program.

We do this by using an OSBYTE call with A=126.
This cleans up various parts of the BBC OS
workspace in response to the Escape error. The
acknowledgement operation is, of course, usually
done automatically by the BASIC interpreter during
an input operation when Escape is pressed. The
simple routine that follows reads the current input
stream and acts accordingly if an Escape error is
detected.

1000 Jnput JSR &FFEO
1010 	BCS error
1020 	RTS
1030 error CMP#27
1040 	BNE out
1050 	LOA #126
1060 	JSR&FFF4
1070 out 	RTS

Line 1000 calls the OSRDCH routine, and 1010
checks the carry flag. If it is clear, then an RTS to the
calling program is executed, with a legal character
in the A register. Otherwise, line 1030 checks to see
if the error was caused by an Escape event, and, if
it was, lines 1050 and 1060 execute the OSBYTE call
that acknowledges the Escape event. You might
think that in order to enter strings of data into your
machine code programs you have to use a routine
of your own devising, but you don't. There exists in
the OS a means of reading strings of characters
from the currently selected input stream. This
routine is accessed via one of the OSWORD calls,
which will be covered in more detail later in the
course. However, we'll use this particular OS WORD
call now to read in strings of characters.

The OSWORD routines are called at address
& FFF1. There are several of these, and we specify
which we require by the value held in the A register
when the call is made. In all OS WORD calls, the X
and V registers of the 6502 point to a block of
memory called a control block, which holds the
parameters that are to be passed over to the
routine. The X register holds the low byte of the
control block address and the V register holds the
high byte of the address - this follows the 6502
Lo-Hi addressing convention. The way in which

User-Defined Commands
PW
18 USERV=&288
20 ?IJSERV=&8 8
25 ?(USERV+1)=&DC
38 FOR IY.=OT02STEP2
48 P./.=&c88
50 C OPT IX
68
	

CMP #0
78
	

BNE notcode
80
	

TXA
98 	.loop
95
	

JSR &FFE3
100
	

DEY
118
	

CPY #8
128
	

BNE loop
138
	

RTS
148 • not code
145
	

RTS
158):NEXT IX
168
200 FOR repl TO 18
210 FOR asc33 TO 48
228 *COPE asc,rep
250 NEXT :NEXT

USER INTERACTION
The main methods of interaction with a
microcomputer are via the keyboard and the
VDU, or television screen. Our detailed
investigation of the BBC Micro's operating system
continues with a discussion of the ways in which
the machine's OS enables us to interact with these
two vital areas of the computer.

Let's begin by examining the OS call that
enables us to read characters from the currently
selected input stream. This routine, named
OSRDCH is called at address &FFEO and is vectored
through locations &210 and &211. As it accepts
single characters from the currently selected input
stream, we should first look at how we select the
input stream. There are two major input streams -
the keyboard and the RS423 input. We can select
one of these by means of an OSBYTE, or *Fx call.
The following table shows this command in both
machine code and BASIC.

Selecting The Input Stream

n keyboard 	RS423 	Assembler 	BASIC

0 	V 	X 	LOA #2 	*FX2n

1 	X 	VO 	LDX#n

2 W 	V 	JSR&FFF4

Thus, * FX2,1 disables the keyboard and enables
the RS435 as the current input stream. Data
received on the RS423 input would be treated as if
it were being typed in to the computer. In
assembler, to do the same job, n would have a
value of one.

Once you've set up the input stream that you
wish to use, you can access it with OSRDCH. The

898 THE HOME COMPUTER ADVANCED COURSE

