
Open Window
The word "HELLO" is scrolled
horizontally and vertically
around the screen window, one
pixel at a time

MACHINE CODE/SPECTRUM WINDOWS

WINDOW DISPLAY
-

The ability to create 'windows' on a screen
display is a particularly useful facility. We
take a detailed look at a machine code
program to do just this on the Spectrum, and
give an accompanying BASIC demonstration
program that shows the effect of scrolling on
the screen.

Our machine code program allows you to define
rectangular windows on the Spectrum screen, and
to scroll these windows left and right, or up and
down. The windows may be of any size and can be
placed anywhere on the screen; they do not need
to occupy eight by eight pixel character squares.

The machine code program uses tables starting
at address $B004 (45060 decimal) to handle
window parameters and for temporary data
storage. It takes the address of the table for the
required window from addresses S B000 and SB001
(45056 and 45057 decimal). The table for each
window takes up 11 bytes, so if more than one
window is required, the table for the second
window will start at SBOOF (45071 decimal), the
table for the third window will begin at SB01 A
(45082 decimal), and so on.

The BASIC demonstration program uses one
window only. The details of this window are PO KEd
into memory in lines 180-230, and the window
initialisation routine is called at line 240. If more
than one window is required, each one must be
defined in this way before it can be used. To
change windows you must POKE the address of the
new window table into memory locations WT and
WT+1. Scroll directions are set by POKEing values
into memory location WNDWTB + DI R — simply
POKE 0 to scroll left, 1 to scroll right, 2 for up, or 3
for down.

The Assembly language program begins by
defining a number of constants. PI XADR is a
subroutine in the Spectrum ROM that calculates
the address of the screen byte, and the bit number
within that byte, of a point on the screen that is
defined by its PLOT co-ordinates. PIXADR takes the
y co-ordinate in the B register and the x co-
ordinate in the C register and returns the screen
address in the HL register pair and the bit position
in the A register.

The routine IN ITW first checks that the co-
ordinates for the bottom right corner of the
window are in fact below and to the right of the co-
ordinates of the top left corner, and also ensures
that the left and right margins are not both in the
same byte of screen memory. This last check
ensures that the window is at least one character
square in width — extra code would be required to

scroll a window that is any narrower.
Errors in window initialisation are printed out

by the ROM error message routine. The
instruction RST 8 (line 2110 of the Assembly
listing) calls the ROM routine and returns to BASIC
command mode, and the DEFB 25 in line 2120
provides the message `C) Parameter error'.

The last section of IN ITW calculates LFTMSK and
RTMASK, which are used when scrolling the screen
bytes at the window margins, where part of the
screen byte may be inside the window and part
outside. The individual bits in the masks that
correspond to screen bits that lie outside the
window margins are set to one, while bits
corresponding to bits inside the window area are
set to zero.

The scroll program proper begins at the label
SCROLL. The program tests the direction of
scrolling and calls H OR IZ for left or right scrolling,
or VERT for up or down scrolling.

Left and right scrolling are very similar in
operation, so instead of using .two separate
routines we have combined them in one. The
correct code for each scroll direction is selected by
testing bit zero of the direction byte. To see how
HORIZ works, we will look at leftward scrolling.

Both left and right scrolling start with the top
row of pixels in the window and work downwards,
so HORIZ begins by copying the y co-ordinate for
the top row into the temporary store for the
current row. When scrolling left, we must start at
the right-hand end of each row of pixels in the
window and work towards the left. To prepare for
this, RMASK and LMASK are copied to MASK1 and
MASK2 respectively, the address of the screen byte
at the left-hand end of the current row of pixels is
calculated and stored in the DE register pair, and
the address of the screen byte at the right-hand end
of the current row of pixels is calculated and stored
in the HL register pair. The subroutine HLNSCR is
then called to scroll the row of pixels. The routine
tests to see if the bottom row of the window has
been reached, and if not it takes the next pixel row
and jumps back to HORIZ3 to scroll again.

HLNSCR begins at one end of the pixel row, with
a byte that may have some bits inside and some
outside the window, then moves along the bytes
that are contained wholly inside the window and
finishes at the other window margin, where again
some bits may be inside and some outside the
window area. We illustrate this with a diagram that
shows how the code operates on the right-hand
byte when scrolling left. The section of HLNSCR
beginning at NEXT scrolls the bytes inside the
window area. The bit that was moved out of the
previous byte into the carry flag has been saved on

396 THE HOME COMPUTER ADVANCED COURSE

