
and ureakpoint-Nurnoer > U
Decrement Breakpoint-Number

If found then
Uninsert-Breakpoint

Breakpoint-Address can be kept in Y, leaving X
available to use as a pointer into the table.
Breakpoint-Number can be kept in B.

Command D, to display the breakpoints, is
covered by the routine labelled DISPBP (Display-
Breakpoints). This is simply accessed by a
subroutine branch:

CMDO BRA DISPBP

Command S. to start running the program, is
rather more complicated, since this is where
breakpoints have to be inserted. The op-code for
the SWI instruction must be inserted at each
address in Breakpoint-Table, and the op-code that
is already there is put into Removed-Values.
When this has been done, control must be
transferred to the start address of the program. We
must also note that the next breakpoint is number
I. The full process for the start of prom -am is:

COMMANDS
Data:

Number-Of-Breakpoints is an eight - bit value
Breakpoint-Table
Removed-Values
Breakpoint -Number is an eight-bit counter
Next-Breakpoint is an eight-bit value
SWI-Opcode is an eight-bit value
Start-Address is a 16-bit starting address for the
program that we are debugging

Process:
Set Breakpoint-Number to Number-Of-
Break poi nts
While Breakpoint-Number > 0

Set-Up-Breakpoint (Breakpoint-Number)
Decrement Breakpoint-Number

Endwhile.
Set Next-Breakpoint to 1
Jump to Start-Address

For this, we use the routine Set-Up-Breakpoint —
this is already coded — which requires the
Breakpoint-Number (minus one, so that it can be
used as an offset into the tables) in A. For
convenience, we will decrement A before the call to
Set-Up-Breakpoint. The full coded routine is
Oven here.

The way that this routine ends needs a little

7% THE HOME COMPLIER ADVANCED COURSE

4!' Ift0ititt4441tiVittablit
-

explanation. When the program to be tested is
running we do not need extra items on the stack, so
we must make sure that the stack is empty when
control is transferred to the program. We can clear
any superfluous items off the stack in the main
module, but if this routine is called by means of a
BSR (to maintain consistency with other
commands) the return address will have been
placed on the stack. If we leave it there, then, in a
long session (where the program may be restarted
a number of times) the stack will keep wowing.
The solution we have used removes the address
from the stack at the same time as control is
transferred back to the program. It does this by
replacing the return address on the stack by the
start address. The RTS then pulls the return
address, which is now the start address, off the
stack, thus transferring control while resetting the
stack.

The final command we will look at in this
instalment is command M, to inspect and change
memory locations. The idea here is to get an input
address and to display the contents of that address
on the screen. The user can then enter a new two-
digit hex number to be placed in that location, or
simply a Return. In either case, we move on to the
next consecutive memory location. The user can
stop the process by entering a dot. The routine
GETHX2 was coded with this in mind, allowing the
entry of two hex digits or a dot or a Return.

COMMAND M
Data:

Current-Location is the 16-bit address of the
location being inspected
Current-Value is found in Current-Location. This
is eight-bit
New-Value for the Current-Location. This is also
eight-bit

Process:
Get Current-Location
Repeat

Display Current-Value
Get New-Value
If New-Value is not a dot then

If New-Value is not Return then
Store New-Value in Current-Location

Endif
Increment Current-Location
Display Current-Location

Endif
Until Current-Location is a dot

For this command routine, Current-Location is
stored in X. and the B register is used for both
Current-Value and New-Value. A is used as a flag
to indicate which of the three possibilities (hex
number, dot or Return) was entered.

We have now to design and code three
remaining commands — G, R and 0. However,
these involve the use of an interrupt mechanism,
which we have yet to look at. This, and the
designing of the main module for the deb igging
program, are the subject of the next instalment.

