
.j us 	(..)i):

BYTE THE DUST

Our 6809 Assembly language course comes
to its conclusion with this instalment. We tie
up all the loose ends of our debugging
program, provide an overall view of the flow
of command within it, and finally code the
main module itself.

The first task of the main module is to set up the
interrupt mechanism, which allows us to set
breakpoints in the program being debugged.
These transfer control to the debugger and allow
us to inspect the contents of the registers and
memory locations. We must then obtain the
starting address of the program being debugged so
that control can be passed to it using the S
command. The rest of the main routine involves
getting commands from the keyboard and
executing them; control is transferred to the
program being debugged by the S and G
commands and returned to the debugger by the
SW instructions inserted at the breakpoints.

Two stages of initialisation for this module were
coded in the last instalment (see page 817). The
entry point for interrupts comes immediately after
the call to this subroutine. The first instruction
here is to save the stack pointer, S so that it can be
used to reference the values from the registers
saved on the stack by the SWI. The next stage is
command interpretation. We have already
developed subroutines to perform all the
commands, so the problem here is to select the
subroutine appropriate to the command entered.

It is possible to code this as a set of nested IF
statements, but we will use the fact that the Get-
Command routine returns an offset into a table of
command characters to perform these calls using a
jump table. This is not perhaps the most efficient
method in this instance, but it is a useful technique
that is worth looking at. It involves setting up a
table of addresses for each of the subroutines that
actually carry out a command.

The JM P instruction, unlike the branch
instructions, can use any of the normal addressing
modes, including indexed and indirect. If we load
X with the base address of the table and use the
offset in B (doubled because this will be a table of
16-bit addresses, unlike the table of eight-bit
command letters), then the command:

JMP [B,X]

will transfer control to the appropriate subroutine.
The BSR call is made to the address of this jump
instruction. As we need to set up this table in
advance, it is necessary to have another stage of
initialisation to carry out this operation.

ADVANCED COURSE

PROCESS SET-UP-JUMP-TABLE
Data:

Jump-Table is a table of eight 16-bit addresses
CMDB, CMDU, etc. are the start addresses for the

subroutines
Process:

For each subroutine
Get start address
Save start address in Jump-Table

Endfor

We must now consider what is to happen at the
end of the run, when the quit command (C)) is
issued, although there is, in fact, very little that
needs doing. It makes sense to leave both the
debugger and the program intact so that they can
be re-entered if necessary.

The stack should be in the same situation when
we exit as it was when we started. One solution
would be to use a separate stack for our program
by setting S to a new value and then restoring the
old value. This is often a useful technique, but in
our situation it may be difficult finding unused
space in memory, with the debugger sitting on top
of another program. Another solution is simply to
increment S by the appropriate amount to lose
anything that we have left there, but this is also
difficult because we do not know whether or not
an interrupt has occurred and the amounts on the
stack will be different. The simplest solution is to
save the initial value of S and restore it as the last
operation of the program.

The interrupt mechanism, as set up in the
initialisation procedure, stores three bytes at the
address given in the SWI vector at $FFFA; we must
restore this or strange results may occur if the
operating system uses SWI for its own purposes.
What we clearly need is a further stage of
initialisation where we save these values to be
restored in our quit routine.

PROCESS SAVE-VALUES
Data:

Saved is the five bytes to store the saved values
Stack-Pointer is the current value of 5, plus two
SWI-Vector is found at $FFFA

Process:
Save Stack-Pointer in Saved
Get SWI-Vector
Save three bytes at SWI-Vector in Saved

The quit routine (command C)) must simply
reverse this process and transfer control back to
the operating system. This can be done in a
number of ways: the SW instruction itself can be
used, after its vector has been reset, or a jump can
be made to a known entry point in the operating

