
RULES

CONDITIONS

FIRE BUTTON PRESSED

1122 AnnErimnpor 1122 GAME LEVEL

PLAYER LEVELNOVICENOVICENOVICENOVICEEXPERTEXPERTEXPERXPERT

I
ACTIONS

ALIEN EVASIVE ACTION

2% r41/2%2%2%

4
4% Mr4%

RANDOM BLASTER SHIELDS

REDUCE ENERGY LEVEL BY1%1%

all exits must be well labelled, with all possible
routes being mutually exclusive and covering all
possibilities. A multiple decision may be drawn, as
in our example, with a set of exit paths leading
from the same decision box. However, it is rare to
see this and, more often, the decision will be
broken down into binary decisions, as shown.

All multiple decisions can be represented as a
set of binary decisions in this way.

THE DECISION TABLE
As an alternative to flowcharts, especially where
there may be many multiple decisions, we can
recommend the use of decision tables. We give an
example of such a table, which represents a set of
rules for making decisions. The table has four
main sections: text describing the conditions for
the rules, text describing the actions to be taken, a
grid showing how the conditions fit into the rules,
and a grid showing which actions are appropriate
to each rule. In the `conditions/rules' grid, values
of variables appear in the cells, while in the
'actions/rules' grid below it, a tick indicates what
action shbuld be performed and a value acts as an
input parameter for that action. Rule 4, for

example, reads as: 'If the fire button is pressed and
the game level is 2 and the player level is novice,
then activate random blaster shields and reduce
energy level by two per cent.'

Decision tables also serve to combine simple
decisions into compound decisions and, in simpler
forms than the one given here, are exactly
equivalent to the truth tables used for predicting
the output of logic gates.

One final point about the use of flowcharts.
Wherever possible, restrict your flowcharts to one
page. It can be irritating and time consuming
leafing through many pages of paper. If your
algorithm becomes too large, try and break it
down into smaller algorithms. Remember that
each algorithm can be used as a single instruction
in some other algorithm. In this way, each routine
in a program could be written as a single process
box in a flowchart of the whole program, even if
that routine uses other routines that in turn use
others, and so on.

Inevitably something will go wrong now and
then and a need will arise for a flowchart to
continue beyond one page. If this happens, divide
the flowchart at a suitable point (a decision, say)
and use a circle with an identifying symbol inside it
to point to the place where the flow of control
continues on the next page (represented by
another circle with the same symbol inside it, as
shown below). If control returns to the main
program, use the circles again to point back.
Another solution is to view the missing portion as
a separate algorithm, refer to it in a process box
and represent it with its own separate flowchart.

THE HOME COMPUTER ADVANCED COURSE 425


