
CI

refinement, down to the fine details of the
program needed to start coding into the chosen
high level language. We shall also try to adhere to
the principles of so-called `structured
programming'. These principles will become clear
during the course of developing this project.

The steps in the development of the program
can be summarised like this:

1. A clear statement of the problem
2. The form of the input and output (first level

description)
2.1 Refinement (second level description)
2.2 Further refinement (third to nth level

description)
3. Coding into high level language

Before embarking on a major software project, it
is essential to state the problem clearly. This is a far
from trivial exercise. Let's try a few ideas for our
computerised address book.

First we'll start with a list of desirable features -
later we can decide which of these can he
implemented with a reasonable amount of
programming effort. We want to be able to:

1. Look up an address, telephone number and
notes by entering a name at the keyboard

2. Get a list of names, addresses and telephone
numbers by entering only part of a name
(perhaps just the surname or first name)

3. Get a list of names, addresses and telephone
numbers for a particular town or area

4. Get a listing of all names starting with a
particular initial

5. Get a full listing of all names in the address
book, sorted alphabetically

6. Add new entries at will
7. Change entries at will
S. Delete entries at will

Assume that the address book program has been
written. What form should the input and output
take? How would you like the program to work
from the user's point of view? Broadly speaking,
programs can be 'menu-dnven', `command-
driven' or a combination of both. In a menu-
driven program, at every point where a decision
has to be taken the user is prompted with a list
(menu) of options. The selection can usually be
made by pressing just one key. With command-
driven programs the user types in specific
command words or phrases, usually without
prompting. Some programs combine both
techniques. The advantage of a menu-driven
program is that it should be easy for a newcomer to
use, making the program more `user friendly'. A
'command-driven program should be faster for an
experienced user to use. We will opt for a menu-
driven approach, though you might decide to
implement this program using command routines
instead — the choice is yours.

Given that the program will be centred on a list
of names, the first thing we must consider is what
form those names should take. Will the computer
understand all of the following formats, for

Basic Programming •

example?

A. J. P. Taylor
Leonardo da Vinci
Glenda JACKSON
Liz T.
P. O'Toole
e. e. cummings
P Jackson
Twiggy
GROUCHO MARX
Sir Freddie Laker

This may seem like splitting hairs, but consider
what would happen if you had entered P Jackson
and then you asked the program to search for
P. Jackson. Unless you had anticipated the
problem, the computer would probably respond
with NAME NOT FOUND.

There are two ways the problem could be
tackled: we can either have `fuzzy' input, allowing
names to be input in any form, together with
clever routines to allow for this when searches are
made; or we can insist on names being input in a
strictly defined form. Any name that did not
conform to the convention would result in an error
message such as NAME FORMAT UNA'CEPTABLE.
The choice is an arbitrary one, but we shall opt for
very `fuzzy' input and let the program worry about
converting names to a standard form.

From the point of view of an alphabetic search,
names can be thought of as having two parts —
surnames and the rest. A surname is relatively
easy to define: any string of upper or lower case
alphabetic characters terminated by a Carriage
Return and preceded by a space (ASCII 32). A
problem immediately presents itself: what would
happen if the name `Twiggy' were entered without
a space at the front? Presumably the program
would reject it as an unacceptable format. We'd
better change our definition.

A name comprises one or more parts: a
surname or a surname and forename. The name
may consist of either upper or lower case
characters, full stops, apostrophes and hyphens. It
will always start with an alphabetic character and
be terminated with a Carriage Return (terminal
full stops will not be allowed). If there is a space,
the last group of characters — including
apostrophes and hyphens — will be counted as a
surname and other parts, including the space, will
be counted as the forename. If there is no space,
the whole name will be counted as the surname.

The surname needs special consideration
because in any alphabetic search, it always takes
precedence over forenames. Titus Albert
Peterson would come after Zoltan Patel, If a name
consists of only one group of characters, such as
Trevanian, Twiggy or a nickname like Baldy, it
can be considered as a surname for the purposes of
our program.

In an alphabetic search, which name would
come first — A. J. P. Taylor or Alfred Taylor? The
decision is arbitrary, but the simplest solution
would be to ignore the full stops and spaces before

THE HOME COMPUTER COURSE 233


