
g already used the add instruction in
previous instalments of the course, we now
begin to examine its implications in terms
of methods of arithmetic, and the system
architecture needed to support them. Here,
we look more closely at the processor
status register and its part in addition — in
particular the role of the carry flag.

The add instruction in both Z80 and 6502
Assembly language is ADC — meaning `Add With
Carry' — a mnemonic of great importance for
Assembly language programming. The concept
of a `carry' bit is of particular significance. Let's
consider the addition of two hex numbers in the
accumulator:

A7 = 10100111
+ 3E _ + 00111110

E5 = 11100101

Since the accumulator is an eight-bit register,
both the numbers to be added and the sum itself
must be in the range S00 to SFF (as they are here)
or else they will not fit into the accumulator. Does
this mean, therefore, that we are restricted to
additions in which the sum is less than $100?
Consider another addition in the accumulator,
one which violates this restriction:

FF = 11111111
+ FF - + 1111 1111

1FE - 111111110

This shows the addition of the largest possible
single-byte numbers, and seems to be an illegal
addition. It requires a nine-bit accumulator. The
solution to this dilemma is suggested in the
statement of the problem — we need only an
extra bit on the accumulator to contain the largest
number that can be generated by the addition of
single-byte numbers. That extra bit is required
only in the sum, not in the addition operands, and
it is required only when there is a `carry' from the
most significant bit of the accumulator.

PROCESSOR STATUS REGISTER
The extra bit is therefore known as the carry bid

and it is located in the eight-bit register associated
with the accumulator known as the processor

status register (PSR). This important register is
connected to the accumulator and the ALU in
such a way that individual bits of the PSR are set
or cleared following any accumulator operation,
depending on the results of that operation. The

176 THE HOME COMPUTER ADVANCED COURSE

MACHINE CODE /PART 9

STARTING FLAG

contents of the process status register can be
regarded as a simple number, but it is usually
more informative to treat it as an eight-element
array of binary flags, whose individual states
show the particular effects of the last operation (a
flag is any variable whose value indicates the state
or truth-value of some condition, rather than
being an absolute value. A flag variable usually
has only two states or conditions: up or down, on
or off, 0 or 1).

When any operation is performed on the
accumulator that causes a carry out of the eighth
bit, then the carry flag of the PSR will be set
automatically to 1; an operation that does not
cause a carry will reset (set to 0) the carry flag.
This applies only to those operations that might
legitimately cause a carry. Some operations, such
as loading to or storing from the accumulator, do
not affect the carry flag. Whenever we investigate
a new Assembly language instruction in the
course from now on, we shall want to know which
of the PSR (or flag register) bits it affects.
Naturally, we shall need to know more about the
other PSR flags, but let's finish our discussion of
the carry flag first.

In general, when adding two single-byte
numbers we won't know in advance what they
will be, so we have to be prepared for the sum of
such an addition to exceed SFF; usually this will
mean reserving two bytes of RAM to hold the
result of an addition. Consider, again, the
previous addition examples:

Hex Carty Binary
Numbers Flag Numbers

A7 = 10100111
+ 3E _ + 00111110

00E5 = 0 /1110010

No Caiy
FF = 11111111

+ FF = + 11111111

01 FE = 1 1111111110
Cwy

The result of the addition is represented in both
examples as a two-byte number. In the first case,
the carry flag is reset to 0 because there is no carry
out from the eighth bit of the sum (the two-byte
result is SOOE5, of which the hi-byte is $00). In
the second case, however, there is a carry out
from the eighth bit, so the carry flag is set, and the
hi-byte of the result is $O1.

To be sure of getting the correct result of an
addition, therefore, we must store the
accumulator contents in the to-byte of the two-

