
In this record there are three fields: the name field,
which comprises alphabetic letters (and, possibly,
the apostrophe in names such as Peter O'Toole);
the address field, which comprises a few numbers
and many letters; and the telephone number field,
which comprises only numbers (ignoring the
problem of whether or not to allow hyphens in
numbers like 01-258 1191). Before we can begin
to write a program to handle complex information
such as this with flexibility, we must decide how to
represent the data within the computer. One way
might be to consider all the information within a
record to be just one long character string, The
problem with this approach is that extracting
specific information is extremely difficult. Let's
assume that the following entry is just one long
character string:

PERCIVAL R. BURTON
1056 AVENUE OF THE AMERICAS
RIO DEL MONTENEGRO
CALIFORNIA
U.S.A.
(415) 884 5100

If we were searching the records to find the
telephone number of PERCIVAL R. BURTON, would
it be safe to assume that the last 14 characters in
the record represented the number? What if we
had included the international dialling code, like
this: 0101 (415) 8845100? Then the number
would have had a total of 19 characters. To
overcome this difficulty, the telephone number is
assigned a separate field, and the program will give
us all the characters (or numbers) in that field
when requested.

The difficulty with this approach is that there
has to be some way of relating the various separate
fields, so that referring to one field (the name field,
for example) can give us the other fields on the
record, as well. One way this could be tackled is to
have a further field associated with the record just
for indexing purposes. If a record was, for
example, the 15th record in the file, its index field
would contain the number 15. This could then be
used to point to the elements in a number of
arrays. To illustrate this, let us suppose one record
looked like this:

Jamie Appleton NAME field
15 Pantbach Road STREET field
Llandogo TOWN field
Gwent COUNTY field
0594 552303 PHONE NUMBEF field
015 INDEX field

If we knew the name of this person and wanted his
telephone number, all we would have to do would
be to search through the elements of the array
holding the names until a match was found. We
would then find which element of the array the
name was in — in this case, number 15. Then all
we would need to do would be to find the 15th
element in the PHONE NUMBER array to get the
right telephone number.

If we had a number of friends in the Forest of

MBasic Programming

This part of subroutine Y is reading values into a
subscripted array, where the subscript is denoted
by the variable L. If subroutine Y is called after
subroutine X, and if the test condition in
subroutine X has been met (that one of the
characters is a " . '), the value of L would be
completely unpredictable and so we would not
know which element of the array values were
being assigned to in subroutine Y. Apart from the
error of branching out of a loop, this subroutine
also uses a GOTO, and this practice should also be
avoided. GOTOs lead to confusion and they should
be avoided wherever possible.

To avoid confusion when using variables, it is
good practice to make a list of them at the pseudo-
language stages of program development,
together with notes saying what they are being
used for. Some languages (but not BAstc) allow
variables to be declared as `local' or `global' — that
is, they have values that apply either in only part of
a program (local) or throughout the whole
program (global). Many variables, such as those
used in loops (for example, the L in LET L =1 TO 10),
are almost always local, so it is often wise to
initialise the value of the variable before it is used
(for example, LET L = 0). Some languages, such as
PASCAL, insist on this; and although BASIC always
assumes the initial value of a variable is 0 (unless
otherwise stated), initialising is still
recommended.

So far we have formulated a reasonable
definition of a name for the purposes of our
computerised address book, and developed some
routines that can handle names in various ways
that we shall use in our complete program. Now
let's once again distance ourselves from the details
of program coding and consider the structure of
the `records' in our address book `file'

The terms `record', `file' and `field' have fairly
specific meanings in the computer world. A file is
a whole set of related information. In a computer
system it would he an identifiable item stored on a
floppy disk or on a cassette tape and it would have
its own name, usually referred to as a filename. We
can consider our entire address book as a file, and
we shall call it ADBOOK.

Within a file we have records. These are also sets
of related information. If we think of our address
book as a card index box, the file would be the
whole box full of cards and the records would be
the individual cards — each one with its own
name, address and telephone number.

Within each record we have fields. The fields
can be considered as one or more rows of related
information within the record. Each of the records
in our ADBOOK file will have the following fields:
NAME, ADDRESS and PhONENUMBER. A typical
record would look like this:

Peter Edvadsen
16A Holford Drive
Worsley
Manchester
061-540 2588

256 THE HOME COMPUTER COURSE?


