
IE
	

6809C0DE/MACIUNECODE

LAST ORDERS
There are three commands for our
debugging program that are yet to be
designed. Before we look at these, however,
we will consider the interrupt mechanism
used to transfer control between the
debugging program and the program being
debugged at the breakpoints. We will also
design the initialisation procedure.

The interrupt mechanism is used at breakpoints in
the original program, where we have replaced an
instruction with an SWI (SoftWare Interrupt) op-
code. The SWI, like the other interrupts on the
6809, is vectored through a specific memory
location - namely, $FFFA. This means that when
an SWI is executed the registers are saved on the
stack and the processor loads the 16-bit address at
SFFFA and $FFFB into the program counter (PC).
Execution then continues from that address. Our
task is to change this vector so that it points to the
entry point of our debugger program. One
problem here is that interrupt vectors are almost
always held in ROM. The fact that these addresses
are fixed, therefore, means that the operating
system must have some other means of vectoring
interrupts.

The normal system is to have a jump table (see
page 639) held in an area of 'scratchpad' RAM,
which is memory that is not normally available to
programs but is reserved for use by the operating
system. The address pointed at by the vector
contains a J P instruction followed by an address,
which normally will point back into the operating
system. However, we can change this address to
the one we want so the first instruction executed
after the software interrupt will be a J M P to the
entry address of the debugger. We must be careful
to replace the original contents of the jump table
before our program finishes executing, because it
is always possible that the operating system will
execute an SWI subsequently. It is worth
remembering that the 6809 has three software
interrupts, and there is no reason why either SWI2
(op-code 10 3F and vector at $FFF4) or SWI3 (op-
code 11 3F and vector at $FFF2) should not be used
- although the fact that these use two-byte op-
codes makes some changes necessary in the
debugger program.

A further problem is that our program can only
occupy whatever memory is left free by the
program we are debugging. The debugger must
therefore be relocatable. You will have noticed
that all references to memory locations in the
program have been (or should have been) made
using program counter relative addressing. The

problem is that at some point we must know the
absolute address of the program entry point so that
we can place it in the interrupt jump table. This
address must be calculated at run-time, since the
assembler cannot deal with it.

Our first task then is calculating this address and
inserting it into the jump table. Note that the entry
point address for SWI will be different from the
start address of the debugger program, because
the routine at the program start address must
handle this initialisation procedure, which will not
be needed when we re-enter the program via SWI.
Accordingly, we will handle all the initialisation
within a subroutine; the entry point will then be
the address containing the instruction after the
BSR call to this subroutine. Very conveniently, this
address is precisely the one saved on the stack by
the BSR call so we can read it from the stack in
order to place it at the appropriate point in the
jump table.

The other job of this initialisation procedure is
to obtain the start address of the program to be
debugged. Here is the completed design:

INITIALISATION PROCEDURE
Data:

Vector-Addressis the address to be found at
$FFFAinX
JMP-Opcodeis the op-code for the JMP
instruction in A
Entry-Address is the address of the entry point in V
Start-Addressof the program to be debugged in 0

We can now return and complete the coding of the
three remaining commands. A further point to
consider involves one of these commands -
namely command R , which displays the contents
of the registers. We do not, of course, want to
display the current contents of the registers while
the debugger is running; instead, we want to look
at the contents of the registers as they were when
the breakpoint occurred. This means that we want
to look at the values that were placed on the stack
by the SWI instruction. However, there will be
other values placed on top of these on the stack by
the time we want to get at them. We could
probably calculate the number of unwanted bytes
on the stack and obtain the register values by
discarding this amount. But a simpler solution is to

insert Breakpoint
Un-insert (remove

breakpoint)
Display current

breakpoints
Start running program
Go (resume from where

program left off)
display contents of

Registers
inspect and change

Memory location
Quit

Process: 	 I
Get Vector-Address 	 R

Store JMP-Opcode at Vector-Address 	 I M
Get Entry-Address 	 I
Store it at (Vector-Address + 1) 	 [
Get Start-Address from keyboard
Save it

THE HOME COMPUTER ADVANCED COURSE 817

