
t4 äBBäXF|J'P

The 68000 assembler described here is a full implementation with many
i::::l:: -l.rma11y

onty found in expensive cross_assemblers running onmlnlcomputer equipment. rL is purpose designed f.; -;";
with theMicrodrive. cartridges and standärd QL serial-printer interfaces. rtsspecification includes:

1. ful1 2-pass assembly
2. output streaming to screen, printer or Microdrlve3. pseudo-operarions (".g., ORG; COND)
4. assembler directives (..g., iggaOfryC)
5. simple expression parsing
6. long label names and 1ocäl labe1s
7. alternative mnemonics, and
8. external library file inclusion.

Note-that this chapter describes the facilities available within theassembler only. rt does not attempt to discuss 68000 instrucrions.

li;rl I -.:L))/ <'*:/'+.r'
I Lisr-file + ,/

l*--Y

Keyboard

*uraa ,ar, IeDrry
j

=l',--y
Edited rcurce I
terl I

J
:=_

ru-
Miqodrives Figure l4.l Assembly code development cycle

244

l4.l Assembleroperation

The assembler lies at the heart of the assembly language system. rttakes its input from a Microdrive file (ot some other suitabl. massstorage medium), and can direct its output either to the screen, aprinter' or the mass storage medium. Figure 14.1 illustrates thedevelopment cycle. The editor is used first in order to create the
source program. This source is then fed to the assembler which createsil" various output files. These output fi1es, and in particular theobject (binary) fi1e, can,then be manipulated in a number äf ways. Forexample, !h. binary file may be left as it is and accessed bysuperBASrcrs LBYTES command. Alternatively its contents could be loadedinto memory and then re-saved in the form of an executable file for usewith SuperBASICts EXEC command.

The user manual, which comes with the assembler package, describes indetail the command options available for the ä""urü1ä., and hbw the
assembler interacts with the editor described in the previous chapter.

14.2 Assembler line syntax
The source input lines for the assembler are single statement lines.Given here is the general syntax of these lin.", more detailedexplanations being glven later under the appropriate headings.

Assembler source input consists of a series of text lines of maximumlength B0 characters, created by the editor described in the previouschapter. Each line 1s of the form:

LABEL: OPERATOR ARGTJMEI{T ;COMMENT

Any of the four parts - 1abe1, operator, argument, or comment _ may beomitted where this is appropriate. (clearly a blank line would contain
none of lhese' and a pure comment line would contain just the fourthelement). rtems are separated by one or more blanfs (spaces or tabcharacters), the colon following a labe1, or the

"eri-colon preceding
the comment.

LABELS

Each label name must start with a letter but thereafter may contain any
combination of characters, underscores, or digits. No account is takenof case' everything of importance being converLed into upper-caseinrernally. Additicnalry a remporary rabel may be given (see seä.14.4).

OPERATORS AND ARGUMENTS

Operators can be 68000 mnemonics (e.g., ADDX, RoR), assembler
pseudo-operators (e.g.t DEFB, C0ND), or an assembler directive (e.g.,
*TNCLUDE). The format of the argument parameter will depend upon theoperator that precedes iL.

COMMENTS

Any line may have a comment appended to aid source documentation. A
comment must be preceded by a semi-colon (;). Anything after this
comment delimiter will be ignored by the assembler.

THE IEND' PSEUDO-OPERATOR

Assembler source text can
assembler pseudo-operator.
end-of-fi1e will be taken as

optionally be terminated with
If it is not used then the
the end of the source text.

the END

natural

14.3 Symbols

Symbols, acting as constants for the duration
can be defined either from r+ithin the source,
(true/fa1se) constants at assembly time.

DEFINITION FROM SOURCE (NqU)

Alphanumeric symbols may be deflned using the assembler pseudo-operator
EQU (or slmply an t=t sign):

;
tAt

; tBt

of the assembly operation,
or dynamically as boolean

For example: LETA EQU $41
LBIts = LEIA+I

The argument following the EQU can be any valid simple expression (a.
defined later). rf an attempt is made to redefine a symbol,-an assemblertMt 1Mu1riple definition) eiror will ensue - during päss 1'oniy. rf suchan error occurs it would be sensible to halt assembly by pressing the
IS9 f.y as there may be many future errors, particulariy ii remporarylabels are also being used (which wi-1l normally be the case). uppär anä
lower case are treated as being the same within symbol definitions:

For example: LEIt EQU letbrl ;tCt
letd EQU letc+l ; tDt
LEf,E EQU LEID+I ;'E'

symbols are di.stinct only within the first eight alphanumeric
characters and they must start with an alpha charactei 1e..2, a.,z). If
the latter rule is violated an tlt (Labe1 format) error will ensue.

For example: DBlJlYforTimerL = 64
Tiner2llelay = DBL,llYfor shL 2

246

DEFINTTION AT ASSEMBLY TIME (QRY)

If a symbol is defined with the QRY pseudo-operator, the value may be
given as either zero (fa1se) by entering N at the keyboard, or as minus
one (true) by entering Y. The prompt for the keyboard entry is gi.ven at
assembly time (durlng pass 1), as defined by the QRY argument. For
example:

FTIST QRY Full listing required

will prompt wlth rFu11 listing required?r and expect either a Y or an N
as the response. The keyboard entry is immediate (no ENTER required) and
the assembler will echo either Y or N as appropri.ate. Note that keying
any letter other than Y will effect an N response. This facility is
extremely useful when conditional assembly is being used as it alfows
the programmer to specify flag values at assembly time, and therefore
t.he source does not have to be edited.

14.4 Labels

There are two types of 1abel which can be used. Alphanumeric labels may
be defined which will have a scope of the entire program. Temporary or
1oca1 numeric labe1s may also be defined, which wi-l1 have a scope
limited to the area between the t\,ro standard labe1s in which thev are
defined.

STANDARD LABELS

A normal alphanumeric labe1 is a special kj,nd of symbol. rt is declared
by ending it with a colon (:), and it vi11 be given Lhe value of the
location counter for the current statement. The 1abe1 itself must obey
the same rules as for symbols (i.e., must be alphanumeric, must start
r+1th an alpha character, and be signlficant in its first eight
characters).

TEMPORARV (r,OC.e,r,) LABELS

Temporary or 1oca1 variables have a number of important attributes. Each
labe1 takes up only one third of the symbol table space required for
normal symbols. They do not appear in the symbol table and therefore the
table r+il1 refer only to important locations, and they may be re-used
within different scope blocks thereby greatly reducing the possibility
of multi-def ined labels.

A 1oca1 1abe1 is defined by the label form tIZt to ,2552", and may
opti.onally be followed by a colon (:). A local 1abe1 may only exisr
after a normal 1abel has been declared, and its scope of existence is
limlted up to the next normal label:

-r-.

nlabl: Eoveq
0toveq

lI: cnp.b
beq.s
addq. b
bra

2I: rts

nlab2: bra
22: nop
nlab3:

During pass two a
label does not exist

to,do
#delay,dl
do,dl
22
tl,do
LZ

IZ ;lZ is undefined here

tUr (Undeclared symbol) error
within its defined scope.

wlll ensue if a loca1

14.5 Expressions

The assembler will accept any non_pri.oritized simple expressi,onconsisting of:

1. symbols
2. normal/1oca1 1abe1s
3. denary/hexadecimal numbers
4. single character strings

(Up-arrow facility,
"eÄ

Se..14.6, is neither
. required nor permitted)

5) the operators:
+ Unary plus / Add

Unary rninus / Subtract
Unsigned 16-bit Multiply
Unsigned 16-bir Divide
Shift right (tn' places)
Shift left (rnt places)
Logical 0R
Logical AND
Onets complement

SHR

SHL
OR

AND

NOT

NUMBERS

Numerlc_ values may be defined ei.ther in denary or
hexadecimal- is being used the number must be p.u.äd"d(ö) or a dollar sign (g):

For example: defb 12,45,&3A
. defrr gE2,g3lBO

If the first digit folloving a g or & hexadecimalvalid hexadecimal digit then an rN? (Number format),error will ensue.

248

in hexadecimal. ff
by an ampersand

delimiter is not a
or 'S

t (Syntax),

SIMPLE EXPRESSIONS

A simple non-prioritized expression is defined in this case to mean any
expression of the general form:

(+/-) <operand) ((operator) (operand))

A unary minus or plus may precede the first operand. Further
operator-operand pairs may be used if deslred. Expression evaluation isstrictly from left to right. The Nor operator is a special case in thatonly one operand may exist, and this operand müst be a symbol or a
normal label. An trf (r1lega1 expression) error will ensue if the
assembler cannot pass the expression in its context. fn most cases thiswilr also be followed by an rst (syntax) error. some valid examples are:

true = -1
false = not true
days = 5

prog: noveq ltrue and &FFrdO
noveq #naue and 255rd2
moveq #naoe shr 8rd3
moveq ttAt rd0
noveq Itzt+Trd0

,

lXz
t

store:

nask
nask2

moveq #tttrdO
moveq #r^l rdO
moveq #tA'+$8O,dO

roveq +nane/256+l,dz
moveq tdays*24rd3

defb O

move.w storeraO

defb O,O

=trueshl8+1
= nask or $2020

;Up-arrov (see 14.6)
;equivalents, ie:
;short form is used.

;Data store

Expression values will take on an 8-bit, l6-bit, or 32-bit value
depending upon the context of the expressi-on. Assembler tot (Overflov)
or tRt (Range) errors will ensue if it seems that an assignment is outof context (e.g., if a 16-blt value is being used in an B-bit context).
some assemblers will si.mply assign the least significant bytes in such
cases, which greatly increases the amount of debugging time required
when you find out that your program does not work äs you intended. For
the purposes of conditional assembly, the expression will be deemed trueif the most significant bit of the result is set (e.g., -1), or false if
this bit is unset (e.9., 0).

249

14.6 Data defrnition
Data may be defined by using the following assembler pseudo-operators:

DEFB - Define byre / char (8-bit)
DBFIJ - Define word (16-bit)
DEFL - Defj-ne tong-word (32-bir)

Alternatively data scorage space may be alrocated (but not defined) byusing the pseudo-operator:

DEFS - I}efine space (n byres)

The four data pseudo-operators available enable any form of static datastorage to be defined, and may be used in the fo11o;ing ways.

DEFB

Thls pseudo-operator is used to defi.ne byte values and characterstrings. A free integration of both types is permitted in any onedefinition line:

defb l3rrThis is a oessager,l3r0
defb 'ABCDEF'
defb O,1,2,3 r4r516,7 r8,9

Each element of the definition line is separated from Ehe next by acoilna (r). If the first character of an element is a singie quoEe, astring of characters is assumed to exist up to, but not inciuding, Ehe
1.1! single quore (t). rn the context of string definirions thefo11or+ing i-s also applicable:

1. an up-arror+ followed by a slngle quote will assemble as a singrequot.e: defb ?^tr
2. an up-arrow followed. by ao up-arrokr will assemble as a singleup-arrow: defb r^^r
3. an up-arrow followed by any other character will force the mostsignificant bit of that character to be set: defb | ^A.r

These special cases may exist anywhere with a string definition:

defb rA^Bcf

defb t^tup^rt ;tupr (vith quotes)
defb rA^^2r

DEFW AND DEFL

These pseudo-operators force numeric definitions
the case of DEFW) or 32-bits (in the case of DEFL)
actual value could reside in an 8-bit location.

250

to occupy 16-bits
whether or not

(in
the

defv 34,956
defl 90O,$4833O,2

Strings (as defined under DEFB) may not be defined using these
pseudo-operators. Each element in the deflnition l1ne must be separaled
from the next by a comma (r).

DEFS

rf an area of memory is to be allocated to some use, but the initial
values within this area do not need to be specified (e.g., heap storage
space), this pseudo-operator may be used. The single.r!ur"nt which must
fol1ow this operator will specify the nurnber of bytes tö reserve.

14.7 Origin setting

The memory address where the assembled code is to start is defined by
the ORG pseudo-operation:

oRG $2A0OO

More than one ORG statement may exist within a prograrn although it
would be unwise Lo define an origin which was lower in memory than the
current assembly address. Previously declared labefs or symbols may be
used within an expression as an argument to oRG. For example, it r+ould
be possible to force an ensuing piece of code to reside ät a clean page
boundary:

current:
t

ORG currenr+256 and $FFITT'FOO
,
ncode:

IL i-s common practice when writing executable code programs and
extensions to superBASrc, to omit the ORG statement glcogether. Assembly
will then be based at address zero.

hIARNING: Labels and symbols used in ORG expressi,ons nust be
pre-defined. rf this is not the case, different origins will exist
during pass 1 and pass 2. rn such cases the code will fail to assemble
properly.

f4.8 Conditionalassembly
rndividual blocks of code may be conditionally assembled using the coND,
ELSE, and ENDC pseudo-operators. The operator coND expects an expression
as an argument. If the most significant bit of the result is set, the

value is deemed true and the following code will be assembled.
conditional assembly-_(or non-assembly) of code wirl continue up untilthe next ELSE or ENDC operator. rf an ELSE operator is found, thecondition for assembly is reversed, and the äppropriate assemblycontinued up untir the next ENDC operator. Ttreiparlicular 1evel ofconditional assembly is terminated on reäching the äo..."ponding ENDCoperaLor.
conditional assembly may be nested. rf pass 1 is completed, butnesting levels for conditional assembly have not been completelymatched' a fatal fAssembler errorr will ensue and assembly will cease(i.e., pass 2 wirr not be entered). A rct error will ensue if an ELSE oran ENDC operator is encountered before a corresponding coND operator.

Examples of this nesting are as follows:

yesjlease = -l
no_thank3ou = not yesjlease

1. cond yes3lease
subx d2,d0

else
subx d0,d2

endc

2. addx dl,d2'cond no_thank3ou
addx d2,d3
cond true

addx d3,d4
else

subx d4,d3
endc

else
subx d3rd2

endc
nop

Note that
(descri bed
conditional
code needs
run in ROM.
simply be
time.

14.9 Directives
The assembler supports a nunber
an asterisk (*) as the first
The following are supported:

; assembled

;not-assenbled

;level 0

;level 1a

;1evel 2a

;level 2b

;level lb

;Back to level O

the QRY form of defining symbol values as true or falsein Sec.14.3) , is an extremely useful mechanism for
assembly., for example, in cases where slightly different
_to be generated depending on whether or noi thl code is to
The actual source code need never be changed _ it woulda rnatter of entering the appropriate responses at assembly

of assembly directives, invoked by using
non-blank character in a statement 1i_ne.

252

1. *Eject
2. *Heading <string>
3. *List (onloff)
4. *Number (on/ off)
5. *Include (filespec)

All of these may be abbreviated to just their first character (for
example, *E is the same as *EJECT).

*EJECT AND *HEADTNG

*Eject causes a form-feed to occur in the list file, and the page number
to be increased by one. Any heading, which had previously been defined,
remalns.

*Heading allows a heading message to be defined which r+i11 be used to
document page headings in the list file. A form-feed will also occur
automatically (as wlth *E). The maximum length of a heading is 35
characters. Headings longer Ehan thi.s will be truncated.

rf one of these two directives is not given before a form-feed is due
on a list file (in order to skip over pages in perforaLed listing
paper), then the assembler will force a page th;ow as änd when necessary
(norma11y after 56 lines of assembly listing).

* lrsr
*List is used to turn the listing on and off. rf the word oN follows the
di.rective then the listing will be turned on. rf the word OFF follows
the directive then the listing will be turned off. Note that the
directive *L 0N will have no effect if the list-fi1e device, specified
in the original command 1ine, was coded as nu11 (Z). The directive is
particularly useful for conditionally listing parts of a large source
fi1e. The symbol table is always produced if the list-fi1e is active and
therefore one way of getting just a symbol table as the list output is
to (condit.ionally) set the list directive off at the beginning of the
source:

FIST QRY Full listing required

cond not FLST
*t off

endc

(Synbol table produced anyway!)

*NUMBER

*Number has the same syntax requirements as *List. The directive enables
the generation and pri-nting of line numbers within the list file to be
switched on and off. The normal state is for line numbers to be given.

*tNcl,uon

*rnclude requires a fu11 file specification as its argument.. Thespecified file will be included in the source input stream ai that pointin the assembly. This feaEure enables a suite of library sources to bekept on a Microdrive cartpidge and included in a program as and whenrequired.
0n1y one level of inclusion is allowed and a file r+i1l fail- to beincluded if its *r directive is within an already included file. rn suchcases an rFt (Fi1e inclusion) error will .n"u" and

"""erury willcontinue at the nexl line in the current source fiIe.
If a file cannot be opened because, for example, the filespecification is incomplete or wrong, an error nessage wiir üe given and

assembly will stop. Note that the file specification must be thÄ same asthat which would be given to access a Microdrive under superBASrc. Thereare no restrictions on extensions, as is the case within command linespecificatlons.
rt is normal pracrice with large source documents to have one (short)

main module which *lnc1udes all other external modules that arerequired.

14.10 Alternative mnemonics

A set of alLernative mnemonics exist i{ithin the assembler to aid the
programmer both in terms of style and readability. First is the mnemonic
for rexclusive-ort operations. There are two widäly used mnemonics forthis instructlon and both are supported:

Standard Alternative
EOR XOR

second, there is the common confusion, especially with processors which
cater for signed and unsigned arithmetic, as to the true interpretation
of the tcarry-clearr and tcarry-setr conditional statements. As such the
assembler provides the followi.ng:

Standard Alternative
BCC, BCS BflS, BIO
DBCC, DBCS DB[S, I]BIO
soc, scs slls, slo

rHSr stands for fhigher or samef, and tLOr stands
differ from the rgreater or equalr (GE) and rless
in that they refer to conditions set after an

The mnemonic part
for tlowert. They
thant (LT) mnemonics
unsigned operation.

14.11 Error messages

The assembler performs many checks while

254

running and a number of errors

N>

L>

Q\

and list-file error codes r+ir1 occur if the source is irlegal in someway. The error codes and messages which exist are as fo11ow3:

Number format error. A hexadecimal number is i11egal.

Label format error. The format of a normal or 1oca1 1abe1 isincorrect.

Syntax error. A catch-a11 message
of i11ega1 syntax.

Multiple definition. An attempt
or symbol durlng pass 1.

I11egal expression. The arithmeticI>

0>

r+ithin the context given.

Undeclared identifier.
referenced which was not

Overflow / Branch out of
assigned to an B-bit
range.

Conditional assembly error. An ELSE
before a corresponding COND.

File i.nclusion error. More than
being attempted.

for lines which contain some form

is being made to redeflne a 1abe1

or logical expression is illegal

?u1lnt - pass 2 a syrnbol or label is being
defined during pass l.
range error. A 16-blt value is beinglocation, or a relative branch is out oi

or ENDC operator was found

one 1eve1 of file inclusion is

R> Range error. An out-of-rimits range is being specified within aparticular instruction.

GENERAL ERROR MESSAGES

A few other errors may occur, usually fatal in effect. rf a file cannotbe opened or a Microdrive cartridg"
"a.oa.

occurs, an appropriaEe messageis displaved and assembly will ceäse. rf bad .orräitio.,äi-ää""rury exisrsin pass 1, an error message is displayed and pass 2 is not entered. rnall these fatal cases thö "..o. rä""äge will lndicate the nature of thefau1t.

14.12 lVord boundary alignment (ALIGI{)
The 68000 processor wirl always require a word or long-word of data tobegin on a word boundary (i."., an even memory address). This impliesthat any i-nstruction opcode must also be on a woid boundary. r{hen theassembler DEFB or DEFS pseudo-operators are used, the tocäiion counrer

could point to an odd address at the end of the definition llne. rf a68000 instruction, DEFW 1ine, or DEFL 1'ne immediately folro\.{s rhedefinition, rhe resulranr objeci code wili
";r'-;-;;;;;'ä"'äioä...0. The68000 will enter an error type exception process when an artempt is madeto_access any inslruction or word of data at an odd address.To stop you from having to count byte definitions, in order to makesure there are an even number of bytes defined a;;;;;r.;;; ir ".ongt),the assembler pseudo-operaror ALIGN is provided. Thi: ;;;;";". shouldfollow any byte definition line rr,äl must, because oi "Äut folrows,leave the location counter at an even address. For example;

datl:

dat2z

defb 6, tFREEIT'
align
defw first, last,aaxrnin

rf the l0cation counter is incremented lnternally, to produce alignment,the byte skipped over will be set to zero by the u""urlr*..--'

256

