- ASSEMBLER
14 OPERATION

The 68000 assembler described here is a full implementation with many
features normally only found in expensive cross-assemblers running on
minicomputer equipment. Tt is purpose designed for use with the
Microdrive cartridges and standard QL serial-printer interfaces. Its
specification includes:

1. full 2-pass assembly

2. output streaming to screen, printer or Microdrive
3. pseudo-operations (e.g., ORG, COND)

4., assembler directives (e.g., *HEADING)

5. simple expression parsing

6. long label names and local labels

7. alternative mnemonics, and

8. external library file inclusion.

Note that this chapter describes the facilities available within the
assembler only, It does not attempt to discuss 68000 instructions.

Keyboard Sciten ﬁ

Source text List-file +
entry €rTor reports

Editor Assembler
t
Edited source
text : .
Source List + object
text files
Microdrives Figure 14.1 Assembly code development cycle

244

m

rr

14.1 Assembler operation

The assembler 1lies at the heart of the assembly language system. It
takes its input from a Microdrive file (or some other suitable mass
storage medium), and can direct its output either to the screen, a
printer, or the mass storage medium., Figure 14.1 illustrates the
development cycle. The editor is used first in order to create the
source program. This source is then fed to the assembler which creates
its wvarious output files., These output files, and in particular the
object (binary) file, can then be manipulated in a number of ways. For
example, the binary file may be 1left as it is and accessed by
SuperBASIC's LBYTES command. Alternatively its contents could be loaded
into memory and then re-saved in the form of an executable file for use
with SuperBASIC's EXEC command.

The user manual, which comes with the assembler package, describes in
detail the command options available for the assembler, and how the
assembler interacts with the editor described in the previous chapter.

14.2 Assembler line syntax

The source input lines for the assembler are single statement lines.
Given here is the general syntax of these lines, more detailed
explanations being given later under the appropriate headings.

Assembler source input consists of a series of text lines of maximum
length 80 characters, created by the editor described in the previous
chapter, Each line is of the form:

LABEL: OPERATOR ARGUMENT ;COMMENT

Any of the four parts - label, operator, argument, or comment - may be
omitted where this is appropriate. (Clearly a blank line would contain
none of these, and a pure comment line would contain just the fourth
element). Items are separated by one or more blanks (spaces or tab
characters), the colon following a label, or the semi-colon preceding
the comment,

LABELS

Each label name must start with a letter but thereafter may contain any
combination of characters, underscores, or digits. No account is taken
of case, everything of importance being converted into upper-case
internally. Additionally a temporary label may be given (see Sec.14,4).

OPERATORS AND ARGUMENTS

Operators can be 68000 mnemonics (e.g., ADDX, ROR), assembler
pseudo-operators (e.g., DEFB, COND), or an assembler directive (e.g.,
*INCLUDE). The format of the argument parameter will depend upon the
operator that precedes it.

245

COMMENTS

Any line may have a comment appended to aid source documentation. A
comment must be preceded by a semi-colon (). Anything after this
comment delimiter will be ignored by the assembler.

THE ‘END’ PSEUDO-OPERATOR

Assembler source text can optionally be terminated with the END
assembler pseudo-operator. If it is not used then the natural
end-of-file will be taken as the end of the source text.

14.3 Symbols

Symbols, acting as constants for the duration of the assembly operation,
can be defined either from within the source, or dynamically as boolean
(true/false) constants at assembly time.

DEFINITION FROM SOURCE (EQU)

Alphanumeric symbols may be defined using the assembler pseudo-operator
1=t

EQU (or simply an '=' sign):

For example: LETA EQU $41 =PA!
LETB = LETA+1 2 B¢

The argument following the EQU can be any valid simple expression (as
defined later). If an attempt is made to redefine a symbol, an assembler
'M' (Multiple definition) error will ensue — during pass 1 only. If such
an error occurs it would be sensible to halt assembly by pressing the
ESC key as there may be many future errors, particularly if temporary
labels are also being used (which will normally be the case). Upper and
lower case are treated as being the same within symbol definitions:

For example: LETC EQU letb+l s'C!
letd EQU letc+l :'D’
LETE EQU LETD+1 i

Symbols are distinct only within the first eight alphanumeric
characters and they must start with an alpha character (A..Z, a3nz)e [f
the latter rule is violated an 'L' (Label format) error will ensue.

64
DELAYfor shl 2

For example: DELAYforTimerl
Timer2Delay

246

DEFINITION AT ASSEMBLY TIME (QRY)

If a symbol is defined with the QRY pseudo-operator, the value may be
given as either zero (false) by entering N at the keyboard, or as minus
one (true) by entering Y. The prompt for the keyboard entry is given at
assembly time (during pass 1), as defined by the QRY argument., For
example:

FLIST QRY Full listing required

will prompt with 'Full listing required?' and expect either a Y or an N
as the response. The keyboard entry is immediate (no ENTER required) and
the assembler will echo either Y or N as appropriate. Note that keying
any letter other than Y will effect an N response., This facility is
extremely useful when conditional assembly is being used as it allows
the programmer to specify flag values at assembly time, and therefore
the source does not have to be edited.

14.4 Labels

There are two types of label which can be used. Alphanumeric labels may
be defined which will have a scope of the entire program. Temporary or
local numeric labels may also be defined, which will have a scope
limited to the area between the two standard labels in which they are
defined.

STANDARD LABELS

A normal alphanumeric label is a special kind of symbol. It is declared
by ending it with a colon (:), and it will be given the value of the
location counter for the current statement, The label itself must obey
the same rules as for symbols (i.e., must be alphanumeric, must start
with an alpha character, and be significant in its first eight
characters).

TEMPORARY (LOCAL) LABELS

Temporary or local variables have a number of important attributes. Each
label takes up only one third of the symbol table space required for
normal symbols, They do not appear in the symbol table and therefore the
table will refer only to important locations, and they may be re-used
within different scope blocks thereby greatly reducing the possibility
of multi-defined labels,

A local label is defined by the label form '1Z' to '255Z' and may
optionally be followed by a colon (:). A local label may only exist
after a normal label has been declared, and its scope of existence is
limited up to the next normal label:

247

nlabl: moveq #0,d0
moveq #delay,dl

17%: cmp.b d0,d1
beq.s 2%
addq.b #1,d0
bra 1%
27Z: rts
nlab2: bra 17 ;17 is undefined here
2% nop
nlab3:

During pass two a 'U' (Undeclared symbol) error will ensue if a local
label does not exist within its defined scope.

14.5 Expressions

The assembler will accept any non-prioritized simple expression
consisting of:

symbols

normal/local labels

denary/hexadecimal numbers

single character strings

(Up-arrow facility, see Sec.l4.6, is neither
required nor permitted)

5) the operators:

O S
sl o

+ Unary plus / Add

- Unary minus / Subtract

* Unsigned 16-bit Multiply

/ Unsigned 16-bit Divide
SHR Shift right ('n' places)
SHL Shift left ('n' places)
OR Logical OR
AND Logical AND
NOT One's complement

NUMBERS

Numeric values may be defined either in denary or in hexadecimal. If
hexadecimal is being used the number must be preceded by an ampersand
(&) or a dollar sign ($):

For example: defb 12,45,&3A
defw $E2,$3AB0O

If the first digit following a $ or & hexadecimal delimiter is not a

valid hexadecimal digit then an 'N' (Number format), or 'S' (Syntax),
error will ensue.

248

SIMPLE EXPRESSIONS

A simple non-prioritized expression is defined in this case to mean any
expression of the general form:

<+/-> <operand> (<operator> <operand>)

A unary minus or plus may precede the first operand. Further
operator-operand pairs may be used if desired. Expression evaluation is
strictly from left to right. The NOT operator is a special case in that
only one operand may exist, and this operand must be a symbol or a
normal label. An 'I' (Il1legal expression) error will ensue if the
assembler cannot pass the expression in its context. In most cases this
will also be followed by an 'S' (Syntax) error. Some valid examples are:

true = -1
false = not true
days = 5

prog: moveq #true and &FF,d0
moveq #name and 255,d2
moveq #name shr 8,d3
moveq #'A',d0
moveq #'z'+1,d0

moveq #''',dO ;Up-arrow (see 14,6)
moveq #'"',d0 ;equivalents, ie:
moveq #'A'+$80,d0 ;short form is used.

e

moveq #name/256+1,d2
moveq #days*24,d3

defb O ;Data store

s e
8
o

move.w store,al

store: defb 0,0

;ask = true shl 8 + 1
mask2 = mask or $2020

Expression values will take on an 8-bit, 16-bit, or 32-bit value
depending upon the context of the expression. Assembler 'O' (Overflow)
or 'R' (Range) errors will ensue if it seems that an assignment is out
of context (e.g., if a 16-bit value is being used in an 8-bit context).
Some assemblers will simply assign the least significant bytes in such
cases, which greatly increases the amount of debugging time required
when you find out that your program does not work as you intended. For
the purposes of conditional assembly, the expression will be deemed true
if the most significant bit of the result is set (e.g., -1), or false if
this bit is unset (e.g., 0).

249

14.6 Data definition

Data may be defined by using the following assembler pseudo-operators:

DEFB -~ Define byte / char (8-bit)
DEFW - Define word (16-bit)
DEFL - Define long-word (32-bit)

Alternatively data storage space may be allocated (but not defined) by
using the pseudo-operator:

DEFS ~ Define space (n bytes)

The four data pseudo-operators available enable any form of static data
storage to be defined, and may be used in the following ways.

DEFB

This pseudo-operator is used to define byte values and character
strings. A free dintegration of both types 1is permitted in any one
definition line:

defb 13,'This is a message',13,0
defb 'ABCDEF'
defb 0,1,2,3,4,5,6,7,8,9

Each element of the definition line is separated from the next by a
comma (,). If the first character of an element is a single quote, a
string of characters is assumed to exist up to, but not including, the
next single quote ('). In the context of string definitions the
following is also applicable:

1. an up-arrow followed by a single quote will assemble as a single
quote: defb '*''
2. an up-arrow followed by an up-arrow will assemble as a single

up-arrow: defb '"*'
3. an up-arrow followed by any other character will force the most
significant bit of that character to be set: defb '"A'

These special cases may exist anywhere with a string definition:
defb 'A"BC'

defb '*'up"'' ;'up' (with quotes)
defb 'A""2'

DEFW AND DEFL

These pseudo-operators force numeric definitions to occupy 16-bits (in
the case of DEFW) or 32-bits (in the case of DEFL) whether or not the
actual value could reside in an 8-bit location.

250

defw 34,$56
defl 900, $4B330,2

Strings (as defined under DEFB) may not be defined using these
pseudo-operators. Each element in the definition line must be separated
from the next by a comma (,).

DEFS

If an area of memory is to be allocated to some use, but the initial
values within this area do not need to be specified (e.g., heap storage
space), this pseudo-operator may be used. The single argument which must
follow this operator will specify the number of bytes to reserve.

14.7 Origin setting

The memory address where the assembled code is to start is defined by
the ORG pseudo-operation:

ORG $2A000

More than one ORG statement may exist within a program although it
would be unwise to define an origin which was lower in memory than the
current assembly address. Previously declared labels or symbols may be
used within an expression as an argument to ORG. For example, it would
be possible to force an ensuing piece of code to reside at a clean page
boundary:

current:

ORG current+256 and $FFFFFFOO

;
ncode:

It is common practice when writing executable code programs and
extensions to SuperBASIC, to omit the ORG statement altogether. Assembly
will then be based at address zero.

WARNING: Labels and symbols used in ORG expressions must be
pre-defined. If this is not the case, different origins will exist
during pass 1 and pass 2. In such cases the code will fail to assemble
properly.

14.8 Conditional assembly
Individual blocks of code may be conditionally assembled using the COND,

ELSE, and ENDC pseudo-operators. The operator COND expects an expression
as an argument. If the most significant bit of the result is set, the

251

value is deemed true and the following code will be assembled.

Conditional assembly (or non-assembly) of code will continue up until
the next ELSE or ENDC operator. If an ELSE operator is found, the
condition for assembly is reversed, and the appropriate assembly
continued up until the next ENDC operator. The *particular level of
conditional assembly is terminated on reaching the corresponding ENDC
operator,

Conditional assembly may be nested. If pass 1 is completed, but
nesting levels for conditional assembly have not been completely
matched, a fatal 'Assembler error' will ensue and assembly will cease
(i.e., pass 2 will not be entered). A 'C' error will ensue if an ELSE or
an ENDC operator 1is encountered before a corresponding COND operator.
Examples of this nesting are as follows:

yes_please = -1
no_thank_you = not yes please
1. cond yes please
subx d2,d0 ;assembled
else
subx d0,d2 ;not—assembled
endc
2. addx d1,d2 slevel O
‘cond no_thank_you
addx d2,d3 ;level la
cond true
addx d3,d4 ;level 2a
else
subx d4,d3 ;level 2b
endc
else ;level 1b
subx d3,d2
endc
nop - ;Back to level 0

Note that the QRY form of defining symbol values as true or false
(described in Sec.14.3), is an extremely useful mechanism for
conditional assembly, for example, in cases where slightly different
code needs to be generated depending on whether or not the code is to
run in ROM. The actual source code need never be changed - it would
simply be a matter of entering the appropriate responses at assembly
time.

14.9 Directives

The assembler supports a number of assembly directives, invoked by using
an asterisk (*) as the first non-blank character in a statement line,
The following are supported:

252

*Eject

*Heading <string>
*List <on/off>
*Number <on/off>
*Include <filespec>

& WwN =

A1l of these may be abbreviated to just their first character (for
example, *E is the same as *EJECT).

*EJECT AND *HEADING

*Eject causes a form-feed to occur in the list file, and the page number
to be increased by one. Any heading, which had previously been defined,
remains.

*Heading allows a heading message to be defined which will be used to
document page headings in the list file. A form-feed will also occur
automatically (as with *E). The maximum length of a heading is 35
characters. Headings longer than this will be truncated.

If one of these two directives is not given before a form-feed is due
on a list file (in order to skip over pages in perforated listing
paper), then the assembler will force a page throw as and when necessary
(normally after 56 lines of assembly listing).

*LIST

*List is used to turn the listing on and off, If the word ON follows the
directive then the listing will be turned on. If the word OFF follows
the directive then the listing will be turned off. Note that the
directive *L ON will have no effect if the list-file device, specified
in the original command line, was coded as null (Z). The directive is
particularly useful for conditionally listing parts of a large source
file. The symbol table is always produced if the list-file is active and
therefore one way of getting just a symbol table as the list output is
to (conditionally) set the list directive off at the beginning of the
source:

FLST QRY Full listing required

cond not FLST
*L. off
endc

<Symbol table produced anyway!>

*NUMBER

*Number has the same syntax requirements as *List, The directive enables
the generation and printing of line numbers within the list file to be
switched on and off. The normal state is for line numbers to be given.

253

*INCLUDE

*Include requires a full file specification as its argument. The
specified file will be included in the source input stream at that point
in the assembly. This feature enables a suite of library sources to be
kept on a Microdrive cartridge and included in a program as and when
required.

Only one level of inclusion is allowed and a file will fail to be
included if its *I directive is within an already included file. In such
cases an 'F' (File inclusion) error will ensue and assembly will
continue at the next line in the current source file.

i a file cannot be opened because, for example, the file
specification is incomplete or wrong, an error message will be given and
assembly will stop. Note that the file specification must be the same as
that which would be given to access a Microdrive under SuperBASIC. There
are no restrictions on extensions, as is the case within command line
specifications.

It is normal practice with large source documents to have one (short)
main module which *Includes all other external modules that are
required,

14.10 Alternative mnemonics

A set of alternative mnemonics exist within the assembler to aid the
programmer both in terms of style and readability. First is the mnemonic
for 'exclusive-or' operations. There are two widely used mnemonics for
this instruction and both are supported:

Standard Alternative
EOR XOR

Second, there is the common confusion, especially with processors which
cater for signed and unsigned arithmetic, as to the true interpretation
of the 'carry-clear' and 'carry-set' conditional statements. As such the
assembler provides the following:

Standard Alternative
BCC, BCS BHS, BLO
DBCC, DBCS DBHS, DBLO
SCC, SCES SHS, SLO

The mnemonic part 'HS' stands for 'higher or same', and 'LO' stands
for 'lower'. They differ from the 'greater or equal' (GE) and 'less
than' (LT) mnemonics in that they refer to conditions set after an
unsigned operation.,

14.11 Error messages

The assembler performs many checks while running and a number of errors

254

and list-file error codes will occur if the source is dllegal in some
way. The error codes and messages which exist are as follows:

N> Number format error. A hexadecimal number is illegal.

L> Label format error. The format of a normal or local label is
incorrect,

S> Syntax error., A catch-all message for lines which contain some form
of illegal syntax.

M> Multiple definition. An attempt is being made to redefine a label
or symbol during pass 1.

I> Tllegal expression. The arithmetic or logical expression is illegal
within the context given.

U> Undeclared identifier. During pass 2 a symbol or label is being
referenced which was not defined during pass 1.

0> Overflow / Branch out of range error. A 16-bit value is being
assigned to an 8-bit location, or a relative branch is out of
range.

C> Conditional assembly error. An ELSE or ENDC operator was found
before a corresponding COND,

F> File inclusion error. More than one level of file inclusion is
being attempted.

R> Range error. An out-of-limits range is being specified within a
particular instruction,

GENERAL ERROR MESSAGES

A few other errors may occur, usually fatal in effect. If a file cannot
be opened or a Microdrive cartridge error occurs, an appropriate message
is displayed and assembly will cease. If bad conditional assembly exists
in pass 1, an error message is displayed and pass 2 is not entered. In
all these fatal cases the error message will indicate the nature of the
fault.

14.12 Word boundary alignment (ALIGN)

The 68000 processor will always require a word or long-word of data to
begin on a word boundary (i.e., an even memory address). This implies
that any instruction opcode must also be on a word boundary. When the
assembler DEFB or DEFS pseudo-operators are used, the location counter

255

could point to an odd address at the end of the definition 1line. If a
68000 instruction, DEFW line; for DEFL " linhe immediately follows the
definition, the resultant object code will not execute as expected. The
68000 will enter an error type exception process when an attempt is made
to access any instruction or word of data at an odd address.

To stop you from having to count byte definitions, in order to make
sure there are an even number of bytes defined (and getting it wrong!),
the assembler pseudo-operator ALIGN is provided. This operator should
follow any byte definition line that must, because of what follows,
leave the location counter at an even address. For example:

datl: defb 6, 'FREEIT'
align
dat2; defw first,last,max,min

If the location counter is incremented internally, to produce alignment,
the byte skipped over will be set to zero by the assembler,

256

