We have now had a fairly thorough look at
the addressing modes available on the 6809
processor, particularly the use of indirect
addressing. There are still some variations
we will need to discuss in more detail in the
course, most notably the use of the program
counter in indexing. For the moment, let’s
take a closer look at how the stacks are used.

So far in the course, we have used the two stack
pointer registers, S and U, only as extra index
registers. The use of the so-called ‘hardware stack’
for the storage of return addresses on subroutine

calls has also been mentioned, although only in

passing. Now we need to backtrack a little and
consider the architecture of a stack, and the way it
is used.

A stack is a special instance of a more general
type of data arrangement known as a /ist. You
should be familiar with the everyday idea of a list,
even if you know little about the increasingly
popular list processing languages, such as Lisp and
LoGo. A list is simply a sequence of data items.
This sequence can be arranged in an order
determined by some property of the data (for
example, a series of numbers in numerical order,
or a string of characters in alphabetical order), or it
can be a random arrangement determined by the
order in which data items were added to the list.
With all of these lists it is sensible to attach
significance to the identity or value of the ‘next’ or
the ‘previous’ item in the list, and particularly to
the list’s first item (known as its *head’) and its last
item (the ‘tail’).

One important feature of a list is that it is a
dynamic data structure; that is to say, items of data
can be added to, or taken from, the list at will. In a
general list, data can be added or removed at any
position in the list. The particular restriction that
specifies that a given list is a stack is that data can
be added to, or taken from, a stack only at one end.
Each new item added to a stack becomes the
‘listhead’, and only this can be removed from it.

The name itself gives a good idea of the way a
stack operates. Consider a stack of plates in a
canteen: as a plate is needed it is taken from the
top, and clean plates are put only on the top of the
stack. You could add plates to, or take them from,
the middle of the stack, but this would be
unnecessarily problematic. It is possible, however,
to inspect an item anywhere in the stack.

There are two extreme situations that can arise
when a stack is operating; either the stack becomes
empty, which is no problem if the next stack
operation adds an item to it, but could be awkward

RISING TO ZERO

Parameter Push

Parameters can be passed to a subroutine by loading them into
registers and then pushing them onto the stack. The subroutine
can pull them off the stack, taking care to move the JSR return
address down the stack when the parameters have been
accessed. If this is not done, then the stack will grow
continually, and eventually overflow

Parameter Insertion

JSR

$F100

RTS

sFi07 | NEXT OP

A

A more usable method of passing parameters is to insert them
into the program directly after the JSR call to the handling
subroutine. The subroutine can then use the return address on
the stack as the base address of the parameter block, and access
it by indexed addressing. The return address must then be
adjusted to point to the next program instruction, rather than to
the start of the parameter block

otherwise; or alternatively, the stack could fill to
overflowing. This second situation can be better
visualised if we consider our stack of plates in a
canteen: there would come a point where the stack

THE HOME COMPUTER ADVANCED COURSE 657

