
accessed. it can be quickly looked up in theindexand read in to
memory.

Deletedrecords are left in ihe file and marked astinwanted. .
They are then overwritten as new records are added
Main File

Name 	Work Tel. 	Home Tef. I 	Job Trite

Andrews 	242 0791 1 727 0942 I 	Designer

Phillips 	6362416 I 	221 3940 1 	Accountant

smith 631 0836 I 	286 8170 	Editor

Deleted

Brown 7296233 	I 236 2190 I 	Dentist

Perer 835 6622 	298 4310 	Decorator

Davids 	743 7216 	450 6926 	Gardener

Deleted 	ord

Deteted

Marks 730 6321 	429 7692 	Mechanic

Klaus 4939899 	455 3431 	Lawyer

West 735 7700 	693 0452 	Hairdresser

Name 	Work Tel. 	I Home Tel. I Job Title

Davidson 629 0491 	I 430 0592 Plumber

Day 435 2488 	I 362 0066 Director

Darren 730 0021 	626 9191 Cleaner

Dammat 439 9933 630 4918 Writer

Davids 743 7216 450 6926 Gardener

Dawes 8300123 340 9924 Nurse

Egerron 731 6666 458 0021 Designer

East 83 1 6294 	I 450 6218 Caterer

Index Linked 	
The most common way to access a random We is with an index.
This is 2 list in RAM Showing the values for a particular keyfield

Find Surds 	 with the corresponding records. When a record is being

82, 	No.

Anorews 	1
I

Baker 	I 	--1

Brown 	I

1
Cressy 	—1

2
Davids 7

3
Davies

4
Fish 15

• 5
Gregory 28

6
Haynes 37

Johns 25

8
Klaus 11

9
M8rkS 	10

10

Index File
11

12

Making A Hash
Find ‘Davids'

HASHING
ALGORITHM

The-hashing algorithm
converts the keys so
that it refers to a
particular block of
records
Records with an
identical hash are
grouped together

Unused space between
brooks of records is left
so thal new records can
be inserred into:position

P 	 • 	 FILE HANDLING/SOFTWARE. c) I
1 	a

employee records using surnames as the sort key.
The hashing algorithm that we will use is: take the
ASCII codes of the first four letters and treat them
as an eight-digit number, square that number,
then take the last four digits of the number as the
hash. JONES, therefore, hashes into record 1161,
whereas JONQUIL hashes into 0161_

Hashing is very different from an indexed
system. With hashing, you can only have one key
field (and one hashing algorithm) per file and this
is used when first placing the records in the file.
Any number of indices can be associated with a
particular file and these can be created at any time
after or during the file's creation.

Hashing is less flexible than indexing but it is
much quicker. To find a particular record, the
program just takes the key, hashes it and retrieves
that particular record. The time taken to search an
index (and indeed to create it in the first place) is
therefore dispensed with.

A problem with hashing arises when two
records generate the same hash code and
therefore should occupy the same position in a
file. To avoid this, hashing algorithms are carefully
designed so that no two keys (save for identical
ones) generate the same hash. Additionally,
records arc spaced out in the file so that two hashes
that are apparently next to each other actually
cover a gap of five or so unused records.

We can now clarify our description of a hashing
system as follows. When a record is stored, its key
is hashed to produce a record number. If that
record is occupied, the system looks at the next
record sequentially. It can do this for the whole
block of five (or whatever) records associdted with
that hash. When a record is to be retrieved its key
is hashed and that group of records is then
searched sequentially for an exact match. This
may seem to nullify the speed advantage, but what
hashing effectively does is to reduce the number of
records to look through from perhaps three
thousand to five or six.

What happens if all five or so records for a
particular hash become filled? There are several
ways to cope with this, the obvious one being to
report a 'file full' message. More often, records
that can't be fitted in position in the file are written
to a separate overflow file with its own index and
incorporated into the main file when possible.
Most systems make a determined effort to avoid
overflow by habitually keeping hashed tiles only
80 per cent or less full. This highlights another
Limitation of hashed access to random files. A
hashed file tends to consume more space than if
the system used an index.

Hashing also speeds up the deletion of
unwanted records. You simply hash the key of the
record, do a quick search to locate it exactly and
mark its position as unfilled. It will then be
overwritten the next time a record with an
identical hash is added to the file.

In the final instalment of this series we will look
at the BASIC commands necessary to create and
access cassette files.

Hashed tires offer high-speed access to particular recOtds in
large random files. However the System is restrictive:and 'Meet
careful programmng.

The record key is processed into a position in - the file with a
predetermined hashing algorithm. Each possible flash usually
refers to a block 01 records that can be searched sequentially to
tind the requfred record

THE ROME COMPUTER ADVANCED COURSE 273

