DISPLAY COUNTER |

B T

In this instalment of Workshop we add two
seven-segment displays to our user port
system that will enable us to display the
contents of the user port data continuously
in hexadecimal.

=mes s

In order to display hexadecimal digits, four bits are
required (four bits give us 16 permutations of zeros
and ones). Thus, any eight-bit number can be
represented using two hexadecimal digits: one for
the lower four bits and another for the upper four.
Although each display is made up of seven LED
segments, the various combinations of segments
can be ‘driven’ by four input lines if decoder logic
is incorporated into the circuit.

Decoders are circuits that translate instructions
from the computer to its peripherals into electrical
signals, and vice versa. In our series on logic we
built our own decoder circuit (see page 146), but
for this exercise we can buy an off- the-shelf logic
circuit. This is chip 7447 in the parts list.

The decoder for each display accepts four input
lines from the user port and, via a sequence of logic
gates, provides seven outputs. The logic circuit has
been designed in such a way that if, say, the four
input lines were 0111, then the appropriate bars
would be lit to display the figure 7 (0111 in binary
is equivalent to 7 in hexademical). The truth table
for this is shown in the margin.

Hexadecimal digits greater than nine are
usually represented by the first six letters of the
alphabet — A to F. You will notice that the
decoder chip that we are using has rather strange
patterns to represent these digits. It is probable
that these patterns can be generated using the logic
circuits required for the digits zero to nine. More
decoding logic would be needed to display the last
six hex digits in the more usual alphabetic way, so
by leaving the extra logic out and using different
symbols for these digits, the number of logic gates
in the decoder is reduced, thus bringing down the
cost of manufacturing the chip.

Once the display circuit has been built we can
display continuously the contents of the user port
data register in hex using the eight data lines
provided. There are sufficient lines available to
drive the two displays simultaneously, but in many
display applications this is not the case and several
seven-segment displays have to share the same
data lines. So that each display can show different
information at the same time, a technique called
‘multiplexing’ is used. Essentially, the data lines
from the display decoder are flipped from one
display to the next, the data present on the lines
also being changed appropriately. If this is done

fast enough all the displays multiplexed in this way
will appear to glow continuously, each displaying
the data that was present at the time when it is
momentarily connected to the data lines.

Parts List

No Hem Maplin No
14 330 ohm 0.4 watt resistors M330R
2 7447 BCD to 7-segment decoder ~ QX55K
1 Common anode double digit display BY66W
2 16-pin DIL chip socket BL19V
1 12-way minicon right-angle socket YW30H
1 10-way minicon right-angle plug ~ YW19V

8-way ribbon cable*

7-way ribbon cable*

Tinned bare wire*
1 50 hole x 36 strip veroboard FLO9K
1 116 x61 x 36mm plastic box LH60Q

*You may have these parts left over from previous
projects. The 12-way socket is necessary only if you
want to extend the system bus. This, and several
wire links on the circuit board may be omitted

We can demonstrate the principle of
multiplexing using the two seven-segment
displays that we are building. Because the display
decoder represents decimal 15 by a blank, we can
use this number to blank out one display while
lighting the other. The following program, when
run, asks for a digit to be displayed and then
appears to show the digit on both displays
simultaneously. However, a routine is included
that inserts a delay to slow down the oscillation
between the two displays. The delay is inserted
while the Space bar is depressed. We can see, on
running the program and depressing the Space
bar, that the digit does in fact flip backwards and
forwards between the two displays. When the
Space bar is again released, the delay is removed
and the flipping action is faster, making the digit
seem to appear simultaneously on each display.
LB REM BEC MULTIFLEXING
2@ DI E&Z: DATREG=%FE&LQ

S0 s
40 left_blank=15%16&6
S0 right blank=15

R=755

a0 REFEAT
D INFUT"DATA T BE MULTIFLEXED":data
2]% DATREG=data+lett _blank

idatanlé+right bl armk

F FROCs1ower

SFACE BAR

1S@ DE
155 REM 18

FRESSED 7

THE HOME COMPUTER ADVANCED COURSE 685



