
MACHINE RESOURCE
MANAGEMENT (TRAP #L)

The QDOS procedures, r,rithin this classificatlon, control the allocation
of machine resources. QDOS supports multi-tasking (i.e., the
pseudo-concurrent execution of multiple jobs) and the appropriate
allocatj.on of both CPU and RAM resources is, therefore, of prime
importance.

4.1 QDOS multi-tasking
System cal1s to QDOS may either be treated as atomic or partially
atomic. Most QDOS routines are atomic in nature. Atomic routines are
executed L'ith the 68000 processor in supervisor mode. In this mode no
other job can take priority over use of the processor and, therefore,
the routine will be executed from start to finish before beingrswapped-outt. Note that this is the general case only; the routinÄ
could be interrupted by an interrupt service procedure. Routines which
are partially atomic will complete some sort of primary operation, but
will then a1low another job to sr/ap-out the original calling process
until a later moment in time. All the I/O ca11s are partially atomlc
unless specifically accessed as being fully atomic. Scheduler cal1s are
parlially at.omic.

JOB STATUS

hlhen a job is set up by QDOS procedures it can exist in a number of
states. First, t.he job can be active. This means that the job has a
priority, within t.he multi-tasking enviroflrnent, and will obtain a share
of the 68000 CPU resources in line with that priority. If the job has a
low priority then it will be allocated a relatively sma1l percentage of
CPU resources.

Second, the job may be suspended, either for a limited time or for an
indefinite period. Jobs are normally suspended to force them to r+ait for
some I/O or another job.

Third, the job may be inactive. The job will sti1l use up space vithin
the memory, but it r+il1 never be allocated any CPU resources. A job at
priority level 0 is identical to an inactive job. A major difference
betwebn an inactive job and a job that has been suspended indefi.nitely
is that the latter cannot be removed by the simple version of thetremove jobt call (i,e., MT.RJOB (TRAP #1, D0=4)). The reason for the

51

difference beth'een suspended/released jobs and
as follows. Suspending and releasing a job
executi,on of code; it merely interrupts it.
inactivated job has completed its execution.
will start again at the beginning.

lnactive/active jobs
does not alter the flow
On the other hand,

ldhen re-activat.ed, the

1S

of
an

job

SCHEDULING

The allocation of CPII

known as scheduling.
the monitor (1.e.,
re-scheduling to take

resources to jobs, in
QDOS re-scheduling is
50/60 Hz). Certain
place (e.g., MT.SUSJB

line with job priorities, is
related to the frame rate of
QDOS routines will cause
(TRAP #1, D0=8)).

TIMEOUTS

A number of QDOS ca11s perrnit a tlmeout to be specified. The procedure
to suspend a job (i.e., MT.SUSJB) is one example. The timeout period is
a multi,ple of the monitor frame rate (i.e., 50/60 Hz). A timeout period
of unity i.s therefore equivalent to 20 ms for a 50 Hz timebase, and
16.666 ms for a 60 Hz timebase.

hlith respect to QDOS procedures, a timeout value of -1 signifies that
an indefinite period is requlred. No other negätive value should be
used. A maximum Eirneout. period of 32767 times the unj-t timebase period
is permitted. This gives a maximum period of 10 minutes, 55.3 seconds
for a 50 Hz tlmebase, and 9 minutes, 6.1 seconds for a 60Hz timebase.

4.2 Use of 68000 registers

The TRAP #l procedures are accessed with register D0 (byte) indicating
which particular call is required. Thls register is also used to reLurn
an error status (long-word) to the calling process. If the error code
returned is not zero then an error has occurred. Sma11 negative error
codes are used to lndi.cate standard errors. These error codes are listed
in Appendix C. If the trap call invoked some form of additional device
driver, the error code returned can be a pointer to a speciflc error
message. In order that the th'o types of error return code mlght never be
confused, the pointer type error code is in fact a pointer to an address
$8000 below that of the true error message. Potentially, all QD0S
routines can return the error tERR.BPf (-15), signifying tbad
parameterr. The fu11 descriptions of the TRAP #1 procedures state vhich
additional errors can be returned. It r+ou1d of course be wlse to check
for any errors after the trap call has been made.

In addition to the use of register D0, data registers Dl to D3 and
address registers A0 co A3 are variably used to pass values to and from
the QDOS procedures. lrlhen the appropriate regist.ers have been set for
any one call the appropriate routine is accessed by simply executing the
TRAP #1 instruction. In cases where t.he data size qualifler (i.e., r.Br,

62

t.wt, or t.Lt) is not
long-word (1.e. , t .Lt) .

specifieC wlthin the description, the default IS

53

MT.INF $00 (0)

Get systeß information

Entry paraEeters:

Return paraleters:

Affected registers:

Additional errors:

none

Dl.L Current job ID
D2.L QDOS version (in ASCII)
A0 Pointer to system variables

Dl, D2, A0

none

Description

MT.INF returns the specified system information. The version number of
QDOS is returned as a 4-byte ASCII string in the form:

v.xx

where tvt is the major revision, and rxxt is the update code. The most
significant word of D2 will contain the major revision codd and Ehe fu1l
stop. The update code r+ill be in the least significant word of D2.

The system variable pointer returned in A0 is the value of the base
pointer SV.BASE (normal1y $28000).

54

MT.CJOB $01 (1)

Create a job in transient progran area

Entry parameters:

Return pararneters:

Affected registers:

Additional errors:

Description

QDOs jobs are created. in the transient program area. Each job has afixed allocation of memory, which muÄt al1ow for a1l data änd workingareas (including st.ack space). rt is advi,sable to use at leasi an extra
64 bytes on top of any calcurated stack space, to a11ow for QD0s utilitystack requirements. 0n entry to Mr.cJoB; registers D2 and D3 willspecify the total memory requirement for the job. Stack space isincluded in the data length specification.

The specified start address will be zero if the start address is atthe base ,of the job. Any other address specified must be absorute. The
owner job rD w111 be zero if the j9b is to be independent. rf thecurrent job is to be this ner.r jobts owner then the owner job rD may be
passed as -1 (i.e., a negative value) (A6,45)

Aö (,{6,A4) A7 (stack)

Figure 4.1 Job area pointers

Note that this procedure does not load or execute the actual job; itsimply attempts to allocate space in the TpA and set up a job änt.y inthe scheduler tables. The job program would normally be loaded byanother job after this call had been successfully completed. Jobprograms must be written.in position independent code. Idhen a job is
Tgd" active, register A6 wilr be pointing to the base of the jo6 area,
A6 indexed by A4 will be pointing to the base of the data area, and A6indexed by A5 will be pointing to the top of the area. The stack pointer

Dl.L Owner job ID
D2.L Code length (bytes)
D3.L Data length (bytes)
Al Start address

D1.L Job ID
A0 Base of area allocated

Dl, AO

(*3) out of memory
(-2) not a valid job

OM

NJ

A7 (stack)

register A7 will, in the simple case, be pointing to two h'ords of zero

pläced on the stack by the MT.CJOB procedure (see Fig'4'1)'
The two words of zero placed on the stack are a standard format

information packet. In non-simple cases these zeros would be replaced by

more detailäd information packets consisting of, for example, a word of
ä"tu r.p.."enting the numbei of channels opened for the job, long-word
channel IDs, anä a job command string. The command string would also be

j.n standard format, i."', u word of data representing the length of the
command string followed by the string itself'

Note that the SuperBÄSIC command EXEC performs the setting up of a

TPA, and the loading änd activation of a job program, all in one go!

Unless there is ihe requirement for one job to set up and control its
own sub-job, t.he use of EXEC would be the normal way to invoke a

transient program (see Chapter 8).

56

MT.JINF 802 (2)

Get job inforaation

Entry parareters:

Return parareters:

Affected registers:

Additional errors:

Ilescription

slgnifies that there i.s no next job).

Figure 4.2 .Iob ownership tnee

This procedure returns the status of a specified job. Jobs may be
independent or they may be ovned by other jobs (except. for job zerowhich cannot be owned by_any other job). The structure of 3'ob ownership
can be viewed as a tree (see Fig.4.2). It is possible, using thi;procedure, to scan the status of an entire tree öf jobs. To do so is asimple matter of secting Dl and D2 to the top of thä tree, and thencontinuously calling MT.JTNF unt.il Dl 1s returned as zero (which

l-'-i : --_--L
&

D1 .L
D2.L

Job ID
Job ID at top of tree

D1.L Next job fD in rree
Dz.L Owner job ID
D3.L Status/priority
A0 Base address of job

D1 - D3, A0, A1

NJ (-2) not a valid job

Iob numben

on exi-t, D2 will contain zero if the scanned job is independent. The
most significant byte of D3 will be negative if the job is suspended,
and the leasr significanr byt.e of D3 wi.11 conraÄn the priority är thejob.

fl

I
i
i

D1.L Job ID
D3.L Error code

none

Dt-D3,A0-A3

NJ (-2) not a valid job
NC (-1) job is not inactive

MT.zuOB $0a 1a)

Relove inactive job froo TPA

Entry paraneters:

Return paraneters;

Affected reSisters:

Additional errors:

Description

Thj-s procedure removes a specified job from the transient program area.
Any sub-jobs owned by the job will also be removed. For the procedure to
work, the job(s) must be inactive.0n entry, D3 should contain the error
code that is to be returned from the activat.ion call which created the
job (see MT.ACTIV; DO=$OA). If no such error exists then D3 wj.1l contain
zeto.

Note that job zero cannot be removed. The procedure is not guaranteed to
be atomic.

58

MT.FR"IOB $05 (5)

Force rerove job(s) fror TpA

Eatry pa.rmters:

Return pararcters:

Affected regiaters:

Additional errora:

Ilescriptioo

This procedure rrrilr inactivate and remove a conplete job tree. on entry,Dl r?l be negative if the job to remove is the';;;;";;- j.ii'or"o, D3should contain the error code that is to be returned from the activationcall nhich creared the job (see lfr.ACTrv; Do=$oA). ii- nJ-'-"u.t errorexists then D3 !dil1 contain zero.

If there is another_ job naiting for the completi-on of the job beingrenoved, it rsill be released with Do set to the error code that wasinitially returned from the activation call nhich .i."a"a-at" j."u.
Note that job zero cannot be removed. The procedure is not guaranteed tobe atomlc.

Dl.L Job ID
D3.L Error code

none

Dl-D3,AO-A3

NJ (-2) not a valid job

59

MT.FREE $06 (6)

Length of largest sPace in TPA

Entry paraoeters: none

Return paraoeters: D1.L LengLh of space found

Affected registers: Dl - D3' A0 - A3

Additional errors: none

Drescription

This will return the length of the largest contiguous area of memory
that could be subsequently allocated to a transient program area. Note
that the value returned can only be used as a guide if there are
numerous active jobs. The scheduling system may have allowed another iob
to grab some (or all) of the free memory in between the time this call
was made and the time the current job attempts to use it.

60

MT.TRAPV $07 (7)

Set job trap vector poitrter

Entry paraneters:

Return paraneters:

Affected registers:

Additional errors:

Ilescription

The traps and exception vectors of the 68000 CPU that are not used by
QDOS may be redirected through a table set up by a particular job. If a
job does set up such a tab1e, the table vectors vi1l be used r+hile the
job is being executed. Additionally, any job ser up by a job wirh irs
ol/n vector table will automatically adopt the same table until it is
redefined 1oca11y.

VecLor tables set up by jobs (with the exception of adoption as
mentioned above) are entirely local and do not affect tables within
other jobs. If on entry, Dl is negative, the table will be set up for
the job that called the procedure, The vector table pointed to by A1 on
entry must contain long-vord addresses for each trap and exception. The
table order, together with the offset address for each vector (with
respect to the base of the table), is as follons:

Dl.L Job ID
Al Pointer to vector table

Dl.L Job ID
A0 Base address of job

Dl, A0, A1

none

Offset Vector/except.ion

0O address error
04 illegal instruction
08 zero divide
OC CHK

10 TRAPV
14 privilege violation
18 trace
1C interrupt 1eve1 7
20 TRAP #5
24 TRAP #6

0ffset VecEor/exceptlon

28 TRAP #7
2C TRAP #8
30 TRAP #9
34 TRAP #10
38 TRAP #17
3C TRAP #12
40 TRAP #13
44 TRAP #14
48 TRAP #15
(end of table)

MT.SU$rB $08 (8)

Suspend a job

Etrtry parareters:

Return parareters:

Affected registers:

Additional errors!

D1.L Job ID
D3.1.J Timeout period
Al Flag byte address

D1.L Job ID
A0 Base of job control area

Dl, A0

NJ (-2) not a valid job

Description

This procedure will suspend a job, either indefinitely or for a given
time. If on entry, Dl is negative, the current job will be suspended.
Suspensi.on for an indefinite tlme will occur if the word value of D3 is
passed as -1. No other negative value should be used. Suspending an
already suspended job will have the effect of resetting the suspension
period.

The flag byte, which exists in the job control area, will be cleared
when the job is later released. The flag is used to indicate to a job,
r.rhich is suspending another job, that either the suspension has
timed-out, or yet another job has released the suspended job. Use of the
job control area i.s rather specialised and it is, therefore, not
normally accessed by the applications prograrnmer. As such register A1,
on entry to the procedure, should be seE to zero.

All jobs will be re-sheduled and therefore (as a result of accessing the
scheduler) MT.SUSJB cannot be fu1ly atomic.

62

MT.RETJB $0e (e)

Release a job and re-schedule

Entfy paraleters:

Return paraneters:

Affected registers:

Additional errors:

Dl.L Job ID

Dl.L Job ID
A0 Base of job control area

Dl, A0

NJ (-2) not a valid job

Ilescription

This call will release (i.e., un-suspend) a specified job and cause alljobs to be re-scheduled. The act of releasing a.job does not imply that
the job will become active. Job activity is. also related t; job
priority, and a job that has a priority of zero will be inactive.

Because all jobs are re-sheduled MT.RELIB cannot be fu11y atomic.

63

MT.ACTTV $OA (10)

Activate a job

Entrlr paraEeters:

Return parareters3

Affected registers:

Additional errors:

Deecription

The specified job, in the transient program area, will be made active.
Execution, on obtaining CPU resources, will begin at the address
specified when the job was created (see MT.CJOB (TRAP #1, D0=1)). A
priority of I27 is the highest priorj-ty possible.

Two timeout options are available. First, if a timeout of zero is
given, execution of the current (calling) job will continue. The nenly
activated job will begin execution at some later monent in time, as and
when the Scheduler invokes j.t. In this case the two errors, ERR.NJ (-2)
and ERR.NC (-1), are the only additional errors that vill be returned.

Second, if a timeout of -1 is gi,ven, the current job uill be suspended
until the nevly activated job has finished execution. In this case any
error could be returned when the job completes (i.e., when the job
removes itself, or is removed by some other job. See MT.RJOB; D0=4, and
MT.FRJOB; D0=5).

Dl.L Job ID
D2.B Job priority (0 to 127)
D3.W Timeout (0 or -1)

Dl.L Job ID
A0 Base of job control area

Dl, A0, A3

NJ (-2) not a valid job
NC (-1) job already active
(any job run-time error>

64

MT.PRIOR $OB (11)

=----,

Change job prioriry

Eotry para*ters:

Returtr paraneters:

Affected registera;

Additional errors:

Dl.L Job ID
D2.B Job priority (0 to 127)

Dl.L Job ID
A0 Base of job control area

D1, A0

NJ (-2) not a valid job

Ilescription

This call can be used to change the priority of a job. If, on entry, Dlis negative, the priority.of the cu.rent jol.wilr ü".n"rä.Jl A prioriryof zero r*i11 effect inactivation.'Thi" präcedure invokes the schedulerand therefore a job r+1r1 immediately inactivate'itself if it seLs itsown priority to zero.

MT.ALRES $OE (L4)

Allocate resident procedure area

Entry paraoeters:

Return paraoeters:

Affected registers:

Additional errors:

Ilescription

This procedure is used to allocate memory to the resident procedure
area. It should only be used when the TPA is completely empty (i.e.,
when no transient programs exist).

Note that the SupeTBASIC function RESPR is normally used to perform
this task from a rB0OTr device or file (see Chapter 8).

Dl.L Number of bytes required

A0 Base address of area

Dl-D3,A0-A3
0M (-3) out of memory
NC (-1) TPA not empty

66

MT.RERES $OF (15)

Release resident procedure area

Bntry para[eters:

Retura paraoeters:

Affected registers:

Additional errors:

Ilescription

This procedure will release the resident procedure area. A paradox is
evident here. The call cannot be made if the TPA is not empty, but a
program must exist to make the ca1l. It is no good having the call as
part of a program in the resident procedure area because it will
annihilate itself in the process!

There is a vay of circumventing this apparent paradox but it is not to
be encouraged. In practice, therefore, this call will never be used and
the resident procedure area will only be released or reset by re-booting
the entire system.

none

Dl-D3,AO-A3

NC (-1) TPA not empty

I

67

MT.DMODE $10 (16)

Set/read display node

Ertry paraneters:

Return parareters:

Affected registers:

Additional errors!

Dl.B Set/read display mode flag
D2.B Set/read display type flag

D1.B Display mode
D2.B Display type

DI, D2, A4

lr
I

I

i

,i

Description

This procedure is used for one of two purposes. First, if Dl and D2 areset _to -1 on entry, the display mode (i.e., four or eight colour) anddisplay type (i.e., TV or monitor) will be returned in it," respectiveregisters. The return values are as follows:

Display mode: 0 -
8-

Display type: 0 -
1-

4 colour
8 colour

monitor
TV (625 line)

second, if one each of the above display mode and display type codesare placed into the respective registers on entry to the- .a11, the
display will be set accordingly. This form of the procedure should only
be invoked when there are no other jobs attempiing to access thedisplay. All windows are cleared and the charactei siäes may change. rn
some cases (e.g., as shown in the example rclockr program in chaptär 9)programs nay be wri.tten such that the display mode may be changed by ajob, without serious side-effects.

68

MT.IPCOM $11 (17)

Intelligent peripheral controller (IFC) comand
(keyboard rov scan, sound)

Entry parareters:

Return paraleters:

Affected registers:

Additional errors:

00
01
10

A3 Pointer to command

Dl.B Return parameter

Dl, D5, D7

none

- send least significant four bits
- send nothing
- send all eight bits

Description

Extreme care must be taken vhen using this procedure. IPC comnunicacion
is entirely unprotected and a total loss of nachine operations may occur
if an error exists 1n the ca1l. Additionally, most of the IPC commands
are for sole use by QDOS, and any attempt to use such commands is likely
to effect a loss of data or something equally belligerent.

Three commands Eo the IPC are usable. Each comnand is a string of
bytes consisting of a command byte, a paraneter b1ock, and a
reply-length byte. The parameter block consists of a para4eter byte
count (in one byte), a long-word holding up to 16 2-bit codes, and the
actual parameter bytes. The 2-bit codes are used to deternine how many
bits of each parameter byte should be sent to the IPC, as follows:

Bits 1,0 of the long-word refer to parameter byte 0. Bits 3r2 refer to
parameter byte 1, and so on. The final reply-length byte of the command
is encoded in a similar fashion using bits lr0 (i.e., a byte value of
$02 will signify that the return value in register D1 should be eight
blts long).

The three commands available are:

l. Keyboard ro!/ scan
The comand, byte is $09. There is one paraneter of four bits
specifying the ron to scan. The reply is eight bits long and it has
one bit set for each column position that has a key pressed. The
relationship between rows, columns, and actual keys can be found in
the QL User Manual in the secti-on on the SupeTBASIC command KEYROIJ.

69

2. Create sound
The command byte is $0A. There are eight parameters:

pitch-1
pitch-2
sLep interval
d urat lon
pitch step
wrap
rand omness
fuzz

There is no reply.

B bi.ts
B blts
16 blts
16 bits
4 bits
4 bits
4 bits
4 bits

3. Kil1 sound
The command byte
given.

$08. There are no parameters and no reply 1S

70

MT.BAUD $rZ (T8)

Set baud rate

Eatry parareters:

Retura parareters:

Affected regl,sters:

Additional errora3

oove.u
oove.b
traP

Ilescription

This procedure is used to set the baud rate for the two serial
interfaces, SERI and SER2. The same baud rate must be applied ro boch
interfaces. The rate is passed to the procedure as a pure binary value.
For example, to set a rate of 9600 baud the following could be used:

Dl .ld

none

D1

none

t960O,dl
t$l2,do
*t

Baud rate

;9600 baud
;Set baud rate proc.

71

MT.RCLCK $13 (19)

Read real-tioe clock

Entry paraneters:

Return paraDeters:

Affected registers:

Additional erors:

none

Dl.L Time in seconds

Dl, D2, A0

none

t
il
li
d

Description

This procedure will return the Eime in seconds and may be used in one of
two r.rays. First, it can be used in conjunction h'ith the clock set and
adjust träps' and date, day, and time utirities to obtain a true
calendar clock for as long as the machine is turned on. rn this case,
time is assumed to have stärted at 00.00 hours on I January 1961.

second, the value returned can be used simply to measure elapsed time
between two successive calls.

MT.SCLCK $r+ (20)

Set real-time clock

Entry paraneters: D1.L Time in seconds

Return paraneters: D1.L Time j"n seconds

Affected registers: D1 - D3, A0

Additional errors: none

D,escription

This procedure is used to set the real-time clock so that utilities can
be used to dlsplay a true calendar clock. Time is assumed to have
started at 00.00 hours on 1 January 1961.

MT.ACLCK $15 (2r)

Adjust real-tioe clock

Entry paraoeters: Dl.L Adjustment in seconds

Return paraneters: Dl.L Tlrne in seconds

Affected registers: Dl - D3, A0

Additional errors: none

Description

This call can be used to adjust the real-time clock. A negative
adjustment can be made. Because it takes a significant time lo set theclock, no adjustment will be made if D1 is zero on entry to the call.

-1

r

it-,

MT.ALCHP $18 (24)

Allocate conon heap area

Entry paraleters:

Return parateters:

Affected registers:

Additional errors:

Ilescription

Space may be grabbed from the common heap area by
allocated by one job on behalf of another
allocated using this procedure will be released
(rather than the tallocatert job) is removed.
cleared and all of it is available to the job.

Dl.L Number of bytes required
D2.L Owner job ID

Dl.L Number of bytes allocated
A0 Base address of area

Dl-D3,A0-A3

OM (*3) out of memory
NJ (-2) not a valid job

jobs. The space may be
job, and all heap space

when Ehe owner job
The allocated space is

,{.l!trr=-.---._

75

MT.RECHP $19 (25)

Release corrnon heap area

Entry pararneters:

Return parareters:

Affected registers:

Additional errors:

Description

This procedure will release t.he specifi.ed space from the common heap
area. It is the programrnerts responsibi-1ity to ensure that t.he area is
completely finished with before this procedure is cal1ed.

A0 Base of area to be freed

none

Dl-D3,A0-A3

none

76

