MACHINE RESOURCE
4 MANAGEMENT (TRAP #1)

The QDOS procedures, within this classification, control the allocation
of machine resources, QDOS supports multi-tasking (i.e., the
pseudo-concurrent execution of multiple jobs) and the appropriate
allocation of both CPU and RAM resources is, therefore, of prime
importance.,

4.1 QDOS multi-tasking

System calls to QDOS may either be treated as atomic or partially
atomic. Most QDOS routines are atomic in nature, Atomic routines are
executed with the 68000 processor in supervisor mode. In this mode no
other job can take priority over use of the processor and, therefore,
the routine will be executed from start to finish before being
'swapped-out'. Note that this 1is the general case only; the routine
could be interrupted by an interrupt service procedure. Routines which
are partially atomic will complete some sort of primary operation, but
will then allow another job to swap-out the original calling process
until a later moment in time. All the I/O calls are partially atomic
unless specifically accessed as being fully atomic. Scheduler calls are
partially atomic.

JOB STATUS

When a job is set up by QDOS procedures it can exist in a number of
states, First, the job can be active. This means that the job has a
priority, within the multi-tasking environment, and will obtain a share
of the 68000 CPU resources in line with that priority. If the job has a
low priority then it will be allocated a relatively small percentage of
CPU resources,

Second, the job may be suspended, either for a limited time or for an
indefinite period. Jobs are normally suspended to force them to wait for
some 1/0 or another job.

Third, the job may be inactive. The job will still use up space within
the memory, but it will never be allocated any CPU resources. A job at
priority level O is identical to an inactive job, A major difference
between an inactive job and a job that has been suspended indefinitely
is that the latter cannot be removed by the simple version of the
'remove job' call (i.e., MT.RJOB (TRAP #1, DO=4)). The reason for the

51

difference between suspended/released jobs and inactive/active jobs is
as follows. Suspending and releasing a job does not alter the flow of
execution of code; it merely interrupts it. On the other hand, an
inactivated job has completed its execution. When re-activated, the job
will start again at the beginning.

SCHEDULING

The allocation of CPU resources to jobs, in line with job priorities, is
known as scheduling., QDOS re-scheduling is related to the frame rate of
the monitor (i.e., 50/60 Hz). Certain QDOS routines will cause
re-scheduling to take place (e.g., MT.SUSJB (TRAP #1, D0=8)).

TIMEOUTS

A number of QDOS calls permit a timeout to be specified., The procedure
to suspend a job (i.e., MT.SUSJB) is one example. The timeout period is
a multiple of the monitor frame rate (i.e., 50/60 Hz). A timeout period
of unity is therefore equivalent to 20 ms for a 50 Hz timebase, and
16.666 ms for a 60 Hz timebase.

With respect to QDOS procedures, a timeout value of -1 signifies that
an indefinite period is required. No other negative value should be
used, A maximum timeout period of 32767 times the unit timebase period
is permitted. This gives a maximum period of 10 minutes, 55.3 seconds
for a 50 Hz timebase, and 9 minutes, 6.1 seconds for a 60Hz timebase.

4.2 Use of 68000 registers

The TRAP #1 procedures are accessed with register DO (byte) indicating
which particular call is required. This register is also used to return
an error status (long-word) to the calling process. If the error code
returned is not zero then an error has occurred, Small negative error
codes are used to indicate standard errors. These error codes are listed
in Appendix C. If the trap call invoked some form of additional device
driver, the error code returned can be a pointer to a specific error
message. In order that the two types of error return code might never be
confused, the pointer type error code is in fact a pointer to an address
$8000 below that of the true error message. Potentially, all QDOS
routines can return the error 'ERR.BP' (-15), signifying ‘'bad
parameter', The full descriptions of the TRAP #1 procedures state which
additional errors can be returned. It would of course be wise to check
for any errors after the trap call has been made.

In addition to the use of register DO, data registers Dl to D3 and
address registers A0 to A3 are variably used to pass values to and from
the QDOS procedures, When the appropriate registers have been set for
any one call the appropriate routine is accessed by simply executing the
TRAP #1 instruction. In cases where the data size qualifier (i.e., '.B',

52

".W', or '.L') is not specified within the description, the default is
long-word (i.e., '.L').

MT.INF $00 (0)

Get system information

Entry parameters: none
Return parameters: D1.L Current job ID
D2.L QDOS version (in ASCII)
AO Pointer to system variables

Affected registers: Bl,-D2, AO

Additional errors: none

Description

MT.INF returns the specified system information. The version number of
QDOS is returned as a 4-byte ASCII string in the form:

V.XX
where 'v' is the major revision, and 'xx' is the update code. The most
significant word of D2 will contain the major revision code and the full
stop. The update code will be in the least significant word of D2.

The system variable pointer returned in AO is the value of the base
pointer SV,BASE (normally $28000).

54

MT.CJOB $01 (1)

Create a job in transient program area

Entry parameters: D1.L Owner job ID
D2.L Code length (bytes)
D3.L Data length (bytes)

Al Start address
Return parameters: DiiL "t Job-1ID
AO Base of area allocated

Affected registers: D1, A0

Additional errors: OM (-3) out of memory
NJ (-2) not a valid job

Description

QDOS jobs are created in the transient program area. Each job has a
fixed allocation of memory, which must allow for all data and working
areas (including stack space). It is advisable to use at least an extra
64 bytes on top of any calculated stack space, to allow for QDOS utility
stack requirements. On entry to MT.CJOB, registers D2 and D3 will
specify the total memory requirement for the job. Stack space is
included in the data length specification.

The specified start address will be zero if the start address 1is at
the base of the job. Any other address specified must be absolute., The
owner job ID will be zero if the job is to be independent. If the
current job 1dis to be this new job's owner then the owner job ID may be
passed as -1 (i.e., a negative value), (A6,A5)

Memory

I IR O)
! ! !

A6 (A6,Ad) A7 (stack)
Figure 4.1 Job area pointers

Note that this procedure does not load or execute the actual jobs it
simply attempts to allocate space in the TPA and set up a job entry in
the scheduler tables. The job program would normally be 1loaded by
another job after this call had been successfully completed. Job
programs must be written in position independent code. When a job is
made active, register A6 will be pointing to the base of the job area,
A6 indexed by A4 will be pointing to the base of the data area, and A6
indexed by A5 will be pointing to the top of the area. The stack pointer

55

register A7 will, in the simple case, be pointing to two words of zero
placed on the stack by the MT.CJOB procedure (see Fig.4.1).

The two words of zero placed on the stack are a standard format
information packet. In non-simple cases these zeros would be replaced by
more detailed information packets consisting of, for example, a word of
data representing the number of channels opened for the job, long-word
channel IDs, and a job command string., The command string would also be
in standard format, i.e., a word of data representing the length of the
command string followed by the string itself.

Note that the SuperBASIC command EXEC performs the setting up of a
TPA, and the loading and activation of a job program, all in one go!
Unless there is the requirement for one job to set up and control its
own sub—job, the use of EXEC would be the normal way to invoke a
transient program (see Chapter 8).

56

MT.JINF $02 (2)

Get job information

Entry parameters: DI Tob S ED)
D2.L._ - Job ID: at top of tree

Return parameters: D1.L Next job ID in tree
D2.L Owner job ID
D3.L Status/priority
AO Base address of job

Affected registers: D1 - D3, AO, Al

Additional errors: NJ (-2) not a valid job

Description

This procedure returns the status of a specified job. Jobs may be
independent or they may be owned by other jobs (except for job zero
which cannot be owned by any other job). The structure of job ownership
can be viewed as a tree (see Fig.4.2). It is possible, using this
procedure, to scan the status of an entire tree of jobs. To do so is a
simple matter of setting D1 and D2 to the top of the tree, and then
continuously calling MT.JINF until D1 is returned as zero (which
signifies that there is no next job). o

Figure 4.2 Job ownership tree 0 °

° ° ° ‘k‘i\i Job numbers

On exit, D2 will contain zero if the scanned job is independent. The
most significant byte of D3 will be negative if the job is suspended,
and the least significant byte of D3 will contain the priority of the
job.

57

MT.RJOB $04 (4)

Remove inactive job from TPA

Entry parameters: DIRE Jeb 1D
D3.L Erreor code

Return parameters: none
Affected registers: D1 - D3, AO - A3

Additional errors: NJ (-2) not a valid job
NC (-1) job is not inactive

Description

This procedure removes a specified job from the transient program area.
Any sub-jobs owned by the job will also be removed. For the procedure to
work, the job(s) must be inactive., On entry, D3 should contain the error
code that is to be returned from the activation call which created the
job (see MT.ACTIV; DO=$0A). If no such error exists then D3 will contain
zero.

Note that job zero cannot be removed. The procedure is not guaranteed to
be atomic.

58

MT.FRJOB $05 (5)

Force remove job(s) from TPA

Entry parameters: Dl,L. .Job ID
D3.L Error code

Return parameters: none

Affected registers: D1 - D3, A0 - A3

Additional errors: NJ (-2) not a valid job

Description

This procedure will inactivate and remove a complete job tree. On entry,
D1 may be negative if the job to remove is the current job. Also, D3
should contain the error code that is to be returned from the activation
call which created the job (see MT.ACTIV; DO=$0A). If no such error
exists then D3 will contain zero.

If there is another job waiting for the completion of the job being
removed, it will be released with DO set to the error code that was

initially returned from the activation call which created the job.

Note that job zero cannot be removed. The procedure is not guaranteed to
be atomic.

59

MT.FREE $06 (6)

Length of largest space in TPA

Entry parameters: none

Return parameters: D1.L Length of space found

Affected registers: D1 - D3, A0 - A3

Additional errors: none

Description

This will return the length of the largest
that could be subsequently allocated to a
that the value returned can only be used
numerous active jobs. The scheduling system
to grab some (or all) of the free memory in

contiguous area of memory
transient program area. Note
as a guide 1if there are
may have allowed another job
between the time this call

was made and the time the current job attempts to use it.

60

MT.TRAPV $07 (7)

Set job trap vector pointer

Entry parameters: Di;L- Job ID

Al Pointer to vector table
Return parameters: D1.L Job ID

AO Base address of job

Affected registers: D1, AO, Al

Additional errors: none

Description

The traps and exception vectors of the 68000 CPU that are not used by
QDOS may be redirected through a table set up by a particular job., If a
job does set up such a table, the table vectors will be used while the
job is being executed. Additionally, any job set up by a job with its
own vector table will automatically adopt the same table until it is
redefined locally.

Vector tables set up by jobs (with the exception of adoption as
mentioned above) are entirely local and do not affect tables within
other jobs., If on entry, Dl is negative, the table will be set up for
the job that called the procedure. The vector table pointed to by Al on
entry must contain long-word addresses for each trap and exception. The
table order, together with the offset address for each vector (with
respect to the base of the table), is as follows:

Offset Vector/exception Offset Vector/exception

00 address error 28 TRAP #7

04 illegal instruction 2¢ TRAP #8

08 zero divide 30 TRAP #9

ocC CHK 34 TRAP #10
10 TRAPV 38 TRAP #11
14 privilege violation 3C TRAP #12
18 trace 40 TRAP #13
1C interrupt level 7 44 TRAP #14
20 TRAP #5 48 TRAP #15
24 TRAP #6 < end of table >

61

MT.SUSJB $08 (8)

Suspend a job

Entry parameters: bl.L .. Job ID

D3.W Timeout period

Al Flag byte address
Return parameters: PliL . Job .ID

A0 Base of job control area

Affected registers: D1, AO

Additional errors: NJ (-2) not a valid job

Description

This procedure will suspend a job, either indefinitely or for a given
time, If on entry, Dl is negative, the current job will be suspended.
Suspension for an indefinite time will occur if the word value of D3 is
passed as -1, No other negative value should be used. Suspending an
already suspended job will have the effect of resetting the suspension
period.

The flag byte, which exists in the job control area, will be cleared
when the job is later released. The flag is used to indicate to a job,
which is suspending another job, that either the suspension has
timed-out, or yet another job has released the suspended job. Use of the
job control area is rather specialised and it is, therefore, not
normally accessed by the applications programmer, As such register Al,
on entry to the procedure, should be set to zero.

All jobs will be re-sheduled and therefore (as a result of accessing the
scheduler) MT.SUSJB cannot be fully atomic.

62

- &

MT.RELJB $09 (9)

Release a job and re-schedule

Entry parameters: DI L Job 1D
Return parameters: bl.E - Jeb-ID
AO Base of job control area

Affected registers: D1, AO

Additional errors: NJ (-2) not a valid job

Description

This call will release (i.e., un-suspend) a specified job and cause

all

jobs to be re-scheduled. The act of releasing a job does not imply that

the job will become active. Job activity is also related to
priority, and a job that has a priority of zero will be inactive.

Because all jobs are re-sheduled MT.RELJB cannot be fully atomic.

job

63

MT.ACTIV $0A (10)

Activate a job

Entry parameters: Di.L Job ID
D2.,B Job priority (0 to 127)
D3.W Timeout (O or -1)

Return parameters: Di.L: .Jeb 1D
AO Base of job control area

Affected registers: D1, AO, A3

Additional errors: NJ (-2) not a valid job
NC (-1) job already active
<any job run-time error)>

Description

The specified job, in the transient program area, will be made active,
Execution, on obtaining CPU resources, will begin at the address
specified when the job was created (see MT.CJOB (TRAP #1, DO=1)). A
priority of 127 is the highest priority possible.

Two timeout options are available. First, if a timeout of =zero is
given, execution of the current (calling) job will continue. The newly
activated job will begin execution at some later moment in time, as and
when the scheduler invokes it. In this case the two errors, ERR.NJ (-2)
and ERR.NC (-1), are the only additional errors that will be returned,

Second, if a timeout of -1 is given, the current job will be suspended
until the newly activated job has finished execution. In this case any
error could be returned when the job completes (i.e., when the job
removes itself, or is removed by some other job. See MT.RJOB; DO=4, and
MT.FRJOB; DO=5).

64

MT.PRIOR $0B (11)

Change job priority

Entry parameters: Bl -~ Jab- 1D

D2.B Job priority (0 to 127)
Return parameters: DiL - JebID

AO Base of job control area

Affected registers: D1, AO

Additional errors: NJ (-2) not a valid job

Description

This call can be used to change the priority of a job. If, on entry, D1
is negative, the priority of the current job will be changed. A priority
of zero will effect inactivation. This procedure invokes the scheduler
and therefore a job will immediately inactivate iitself if it sets its
own priority to zero,

65

MT.ALRES $0E (14)

Allocate resident procedure area

Entry parameters: D1.L Number of bytes required
Return parameters: AO Base address of area
Affected registers: D1 - D3, AO - A3

Additional errors: OM (-3) out of memory
NC (-1) TPA not empty

Description

This procedure is used to allocate memory to the resident procedure
area. It should only be used when the TPA is completely empty (i.e.,
when no transient programs exist),

Note that the SuperBASIC function RESPR is normally used to perform
this task from a 'BOOT' device or file (see Chapter 8).

66

MT.RERES $0F (15)

Release resident procedure area

Entry parameters: none
Return parameters: none
Affected registers: D1 - D3, AO - A3

Additional errors: NC (-1) TPA not empty

Description

This procedure will release the resident procedure area. A paradox is
evident here. The call cannot be made if the TPA is not empty, but a
program must exist to make the call. It is no good having the call as
part of a program in the resident procedure area because it will
annihilate itself in the process!

There is a way of circumventing this apparent paradox but it is not to
be encouraged. In practice, therefore, this call will never be used and
the resident procedure area will only be released or reset by re-booting
the entire system.

67

MT.DMODE $10 (16)

Set/read display mode
Entry parameters: D1.,B Set/read display mode flag
D2.B Set/read display type flag

Return parameters: D1.B Display mode
D2.B Display type

Affected registers: D1, D2, A4

Additional errors: none

Description

This procedure is used for one of two purposes. First, if D1 and D2 are
set to -1 on entry, the display mode (i.e., four or eight colour) and
display type (i.e., TV or monitor) will be returned in the respective
registers. The return values are as follows:

Display mode: 0O - 4 colour

8 ~ 8 colour
Display type: 0 - monitor

I — TV (625 line)

Second, if one each of the above display mode and display type codes
are placed into the respective registers on entry to « the -eald, - the
display will be set accordingly. This form of the procedure should only
be invoked when there are no other jobs attempting to access the
display. All windows are cleared and the character sizes may change. In
some cases (e.g., as shown in the example 'clock' program in Chapter 9)
programs may be written such that the display mode may be changed by a
job, without serious side-effects.

68

MT.IPCOM $11 (17)

Intelligent peripheral controller (IPC) command
(keyboard row scan, sound)

Entry parameters: A3 Pointer to command
Return parameters: D1.B Return parameter
Affected registers: D1, D5, D7

Additional errors: none

Description

Extreme care must be taken when using this procedure, IPC communication
is entirely unprotected and a total loss of machine operations may occur
if an error exists in the call. Additionally, most of the IPC commands
are for sole use by QDOS, and any attempt to use such commands is likely
to effect a loss of data or something equally belligerent.

Three commands to the IPC are usable. Each command is a string of
bytes consisting of a command byte, a parameter block, and a
reply-length byte. The parameter block consists of a parameter byte
count (in one byte), a long-word holding up to 16 2-bit codes, and the
actual parameter bytes. The 2-bit codes are used to determine how many
bits of each parameter byte should be sent to the IPC, as follows:

00 - send least significant four bits
01 - send nothing
10 - send all eight bits

Bits 1,0 of the long-word refer to parameter byte 0. Bits 3,2 refer to
parameter byte 1, and so on. The final reply-length byte of the command
is encoded in a similar fashion using bits 1,0 (i.e., a byte value of
$02 will signify that the return value in register D1 should be eight
bits long).

The three commands available are:

1. Keyboard row scan
The command byte is $09. There is one parameter of four bits
specifying the row to scan. The reply is eight bits long and it has
one bit set for each column position that has a key pressed. The
relationship between rows, columns, and actual keys can be found in
the QL User Manual in the section on the SuperBASIC command KEYROW.

69

M E———

2, Create sound

The command byte is $0A. There are eight parameters:

pitch-1
pitch-2

step interval
duration
pitch step
wrap
randomness
fuzz

There is no reply.

3. Kill sound

8 bits
8 bits
16 bits
16 bits
4 bits
4 bits
4 bits
4 bits

The command byte is $0B. There are no parameters and no reply is

given.

70

T TR

T T e

MT.BAUD

Set baud rate

Entry parameters:
Return parameters:
Affected registers:

Additional errors:

Description

This procedure is used
interfaces, SER1l and

.
.

move.w
move.b
trap

$12 (18)

D1.W Baud rate
none
D1

none

to set the baud rate for the two

serial

SER2. The same baud rate must be applied to both
interfaces. The rate is passed to the procedure as a pure binary
For example, to set a rate of 9600 baud the following could be used:

#9600,d1 ;9600 baud
#$12,d0 ;Set baud rate proc.

value.

71

MT.RCLCK $13 (19)

Read real-time clock

Entry parameters: none
Return parameters: DI.L Time in seconds
Affected registers: D1, D2, AO

Additional errors: none

Description

This procedure will return the time in seconds and may be used in one of
two ways. First, it can be used in conjunction with the clock set and
adjust traps, and date, day, and time utilities to obtain a true
calendar clock for as long as the machine is turned on. In this case,
time is assumed to have started at 00.00 hours on 1 January 1961,

Second, the value returned can be used simply to measure elapsed time
between two successive calls.

72

MT.SCLCK $14 (20)

Set real-time clock

Entry parameters: D1.L Time in seconds
Return parameters: Dl1.L Time in seconds
Affected registers: D1 - D3, AO

Additional errors: none

Description
This procedure is used to set the real-time clock so that utilities can

be used to display a true calendar clock, Time is assumed to have
started at 00,00 hours on 1 January 1961.

73

MT.ACLCK

Ad just real-time clock

Entry parameters:
Return parameters:
Affected registers:

Additional errors:

Description

This call can be used

adjustment can be made. Because it takes a significant time to set the
clock, no adjustment will be made if D1 is zero on entry to the call.

74

$15 (21)

D1.L Adjustment in seconds
DI.L Time in seconds
D1 - D3, AO

none

to adjust the real-time

P I e

E
:
i

!
f

T Ty e T e e

N————

MT.ALCHP $18 (24)

Allocate common heap area
Entry parameters: D1.L Number of bytes required
D2.,L Owner job ID

Return parameters: D1.L Number of bytes allocated
AO Base address of area

Affected registers: D1 - D3, AO - A3

Additional errors: OM (-3) out of memory
NJ (-2) not a valid job

Description

Space may be grabbed from the common heap area by jobs. The space may be
allocated by one job on behalf of another job, and all heap space
allocated using this procedure will be released when the owner job
(rather than the 'allocater' job) is removed. The allocated space is
cleared and all of it is available to the job,

75

MT.RECHP $19 (25)

Release common heap area

Entry parameters: AO Base of area to be freed
Return parameters: none
Affected registers: D1 - D3, AO - A3

Additional errors: none

Description

This procedure will release the specified space from the

common heap

area. It 1is the programmer's responsibility to ensure that the area is
prog Y

completely finished with before this procedure is called,

76

L
£
F
L,
:

|

