
Logical Shift Right PSR CARRY FLAG

BEFORE

ACCUMULATOR

PSR CARRY FLAG

1 1 1 0 BEFORE

ACCUMULATOR

1 0 1 1 1 0 0 1 1 1FTER

Rotate Left PSR CARRY FLAG

1 1 0 0 1 0 BEFORE

ACCUMULATOR

1 0 1 0 1 AFTER

0 1 0 1

Rotate Right With Branch

MACHINE CODE/PART 151E1

Shift Work
The Shift and Rotate
instructions are used
primarily to examine the
contents of a register bit by
bit. With each shift, the top or
bottom bit of the register is
moved into the PSR carry
flag; the state of the carry
flag can then be used by a
branch instruction to
determine the flow of
program control (as can be
seen in the multiplication
subroutine in this
instalment). The rotate
instructions can be used so
that register contents are
preserved, but the logical
shift instructions shift zeros
in as they shift bits out. A left
shift, therefore, multiplies the
register contents by two, and
a right shift divides the
contents by two

We know that if we do the lo-byte subtraction
first the result is 37B, and a carry. That carry is then
added by the SBC instruction to 321, making $22,
which is then subtracted from $37, giving $15. The
answer, $157B, can be seen to be correct by
checking the decimal version.

Two-byte arithmetic on the Z80, therefore,
follows this simple procedure:

1) Clear the carry flag.
2) Subtract the lo-bytes with carry.
3) Subtract the hi-bytes with carry.

The 6502 version of this sequence differs in the
first particular — the carry flag must be set to
permit a 'borrow' out of the lo-bytes from the hi-
byte. If no borrow occurs, then the subtraction
proceeds as normal, and the carry flag remains set
for the subtraction of the hi-bytes, which should
similarly proceed normally. If an underflow occurs
in the lo-byte subtraction, however, the carry flag
acts as the 'ninth bit' of the accumulator. This
ensures that a correct result occurs there, and that
the carry flag is then reset. When the hi-bytes are
subtracted with a reset carry flag, the effect is the
same as in the Z80 hi-byte subtraction with the
carry flag set — the number to be subtracted is
decremented before the subtraction takes place.
Both methods of dealing with the subtraction
borrow have their equivalent in the old-fashioned
arithmetic methods of 'borrowing' here, and
'paying back' there. Let's consider the 6502
version in more detail.

If we clear the carry flag, and subtract SP from
35F, the result is $7A in the accumulator, and the
carry flag remains clear. We have seen from the
Z80 example that a 'true' result is 37B with the
carry flag indicating a negative number. $7B is the
two's complement of the 'real' answer (-$85). We
can see that $7A is the one's complement of this
number, and that the state of the carry flag,
therefore, is a kind of switch on the accumulator's
mode. That is to say, it is set for two's complement,
and reset for one's complement.

If we do the subtraction on the 6502 with the
carry flag set, then the accumulator contains $7B,
and the carry flag is reset. If this is a two-byte
subtraction, puttirg the carry flag into reset state
will ensure that the hi-byte subtraction result is
decremented, thus taking care of the 'borrow'
from the 10-bytes.

MULTIPLICATION
Consider the decimal multiplication sum:

174 Multiplicand
x209 Multiplier

1566 1st Partial Product
000 2nd Partial Product

+348 3rd Partial product

36366 Final Product

You don't have to understand positional notation
to use this method, you just have to be able to
follow simple procedures and do single-digit
multiplication. The heart of the method is the
writing of each partial product one place to the left
of the previous product (the empty columns are
left blank here for emphasis). Once the necessity
for this is accepted, then forming the partial
products requires only a knowledge of the
multiplication tables.

The combination of shifting partial products
and rote learning of tables is what makes decimal
long multiplication difficult for many people.
There is only one real product in binary
multiplication, and that is one times one; all other
single-digit products result in zero. Consider this
binary long multiplication sum:

1101 = 13 decimal
1001 = 9 decimal

1101 1st Partial Product
0000 2nd Partial Product

0000 3rd Partial Product
1101 4th Partial Product

1110101 = 117 decimal

The shifting of partial products is clearly seen in
this example, as is the overall simplicity of
multiplication in binary. A partial product is equal
to either zero or to the shifted multiplicand,
depending on whether the corresponding
multiplier bit is one or zero. That immediately
sounds like the sort of test we've become used to as

298 THE HOME COMPUTER ADVANCED COURSE

