
Basic Programming

More Uses For FOR-NEXT hoops
FOR-NEXT loops are often used to create delays in
the program. There are times when you don't want
everything done at maximum speed and so you
introduce a delay. You probably found that the
answers in the MULTIPLY BY 10 program flashed
up so quickly they seemed instantaneous. Let's
make the computer look as if it's having to think
before it answers by using FOR-NEXT to insert a
delay. Add the lines shown in blue type to
your program.

10 REM MULTIPLY BY 10
20FORX=1 108
30 PRINT "TYPE IN A NUMBER"
40 INPUT A
50LETA = A* 10
52 FORD =1 TO 1000
54 NEXT D
60 PRINT"YOUR NUMBER MULTIPLIED BY 10

IS'
70 PRINT A
80 N EXT X
90 END

We have added another two lines, 52 and 54,
inside our original FOR-NEXT loop. Let's look at
them.

52 FOR D =1 TO 1000
54 NEXT D

D is set to 1 and the program goes to the next line.
This is the corresponding NEXT statement. Noth-
ing actually happens inside the loop, the program
simply loops back to line 52 and increments D to 2.
This happens 1000 times before the program goes
to the next part — which is printing the answer.
Computers are fast, but everything takes a finite
time, so looping back 1000 times takes a notice-
able amount of time. Computers vary in the time
they take to loop. On the Epson HX-20 this FOR-
NEXT loop takes 2.9 seconds, while on the Spec-
trum it takes 4.5 seconds. Experiment by changing
the number you use as the upper limit in line 52.

To make the computer behave more like a
human being, add these three lines:

56 PRINT "NOW LET ME SEE..."
57FORE = 1 TO 1000
58 NEXT E

LIST the program and RUN it. We now have two
delays that do absolutely nothing except waste
time.

Add these two lines:

51 REM THIS LOOP WASTES TIME
55 REM THIS WASTES MORE TIME

Now LIST the program and have a good look at it.
Notice how all the extra lines we have added have
fitted into exactly the rightplaces. Whichbrings us
to the last point in this instalment of the course -
line numbers.

We started our original program with line 10
and went up in jumps of 10 for each new line, end-
ing with line 90. We could have chosen any

numbers, for example 1, 2, 3 ... 9. But if we had
done that, how would we have fitted in the extra
lines? Programmers always have afterthoughts
and improvements to make, so allow for these by
leaving big gaps between line numbers in the
`Mark I' versions of their programs. You could
even start with line number 100 and go up in jumps
of 50 or 100 if you wanted.

Some versions of BASIC include a useful com-
mand called AUTO. BBC BASIC has it, so does the
Epson HX-20. The Dragon, Sinclair computers
and the VIC 20 do not. If your BASIC has AUTO you
can save a lot of time by having the line numbers
generated for you automatically. Find out if your
BASIC has AUTO by typing:

AUTO 100,10<CR>

If your BASIC does have AUTO you will see on
the screen:

100

The screen shows the number 100 followed by a
space and then the cursor. The cursor is a mark
(sometimes a line, or a square) that shows on the
screen where the next character will appear. You
can start enteringthe first line of the program from
the cursor position. When you hit <CR> the next
line will appear automatically, starting with the
line number 110. AUTO, if you have it, can either be
used by itself, or with one or two `arguments'.
Argument is a mathematical term. In the expres-
sion 2 + 3 = 5, the arguments are 2 and 3. With the
AUTO command, it can be used just by itself (i.e.
AUTO<CR>) or with one'argument' (e.g. AUTO
100<CR>) or with two arguments (e.g. AUTO
300,50). AUTO by itself usually causes line
numbers to start with 10 and to go up in increments
(jumps) of 10. If only one argument is used (e.g.
AUTO 1 00<CR>) the first number will be 100 (in
this case) and then the numbers will go up in the
`default value' — which again is usually 10. If you
specify two arguments, the first number specifies
the starting line number and the second number
specifies the increment. AUTO 25C,50<CR> will
give a starting numberof 250, the nextnumberwill
be 300 and so on in increments of 50. Even on the
simplest micro, you're unlikely ever to run out
of lines.

Inthe next instalment of this course we will look
at various ways of improving the visual present-
ation of the program on the screen and different
ways of printing out data.

Basic Flavours
Most microcomputers can use this instruction in
the form of either IF A> 999 THEN 80 or IF
A> 999 GOTO 80. (The Spectrum uses IF
A> 999 THEN GOT080.)

This command is not available or the Com-
modore VIC 20, DRAGON 32 or Sinclair
Spectrum.

THE HOME COMPUTER COURSE 39


